#include <iostream>Basically, we:
#include <cuda.h>
/* GPU code: set an array to a value */
__global__ void set_array(float *vals,float param) {
int i=threadIdx.x; /* find my index */
vals[i]=i+param;
}
int main(int argc,char *argv[]) {
int n=16; /* total number of floats */
float *vals; /* device array of n values */
cudaMalloc( (void**) &vals, n*sizeof(float) ); //Allocate GPU space
set_array<<<1,n>>>(vals,0.1234); /* Initialize the space on the GPU */
/* Copy a few elements back to CPU for printing */
int i=7;
float f=-999.0; /* CPU copy of value */
cudaMemcpy(&f,&vals[i],sizeof(float),cudaMemcpyDeviceToHost);
std::cout<<"vals["<<i<<"] = "<<f<<"\n";
return 0;
}
#include <iostream>
#include <cuda.h>
/* error checking */
#define check(cudacall) { int err=cudacall; if (err!=cudaSuccess) std::cout<<"CUDA ERROR "<<err<<" at line "<<__LINE__<<"'s "<<#cudacall<<"\n";}
/* GPU code: set an array to a value */
__global__ void set_array(float *vals,float param) {
int i=threadIdx.x+blockDim.x*blockIdx.x; /* find my index */
vals[i]=i+param;
}
int main(int argc,char *argv[]) {
int w=4, h=4; /* number of blocks, threads per block */
int n=w*h; /* total number of floats */
float *vals; /* device array of n values */
check(cudaMalloc( (void**) &vals, n*sizeof(float) )); //Allocate some space
set_array<<<w,h>>>(vals,0.1234); /* Initialize the space on the GPU */
/* Copy a few elements back to CPU for printing */
for (int i=0;i<n;i+=3) {
float f=-999.0; /* CPU copy of value */
check(cudaMemcpy(&f,&vals[i],sizeof(float),cudaMemcpyDeviceToHost));
std::cout<<"vals["<<i<<"] = "<<f<<"\n";
}
return 0;
}
#include <iostream>Here's the output on NetRun's NVIDIA GeForce GTX 280:
#include <cuda.h>
#include "lib/inc.c"
float *dev_ptr=0, *host_ptr=0;
int len=0;
int time_memcpy(void) {
cudaMemcpy(dev_ptr,host_ptr,len,cudaMemcpyHostToDevice);
cudaThreadSynchronize();
return 0;
}
__global__ void doGPUdatawrite(float *arr,float val) {
int i=blockIdx.x*blockDim.x+threadIdx.x;
arr[i]=val;
}
int time_datawrite(void) {
int blocks=1, tpb=len;
while (tpb>=512) {blocks*=2; tpb/=2;}
doGPUdatawrite<<<blocks,tpb>>>(dev_ptr,1.2345);
cudaThreadSynchronize();
return 0;
}
void time_sweep(const char *name,timeable_fn f) {
int max=1024*1024*4;
cudaMalloc((void **)&dev_ptr,max*sizeof(float));
cudaMallocHost((void **)&host_ptr,max*sizeof(float));
std::cout<<"Did mallocs\n";
for (len=64;len<=max;len*=4) {
double t=time_function(f);
printf("%s size %d: %.2f ns/float (%.1f us)\n",
name,len,t/len*1.0e9,t*1.0e6);
}
cudaFreeHost(host_ptr);
cudaFree(dev_ptr);
}
int main(int argc,char *argv[]) {
std::cout<<"Starting up...\n";
time_sweep("memcpy",time_memcpy);
time_sweep("GPU write",time_datawrite);
return 0;
}
memcpy size 64: 163.73 ns/float (10.5 us)Note that really big arrays, with millions of floats, take much less time per float than smaller arrays. The basic trouble is that going through the OS, across the PCIe bus, into the GPU, and back takes like 10 microseconds (10us = 10000ns). If you go to all that just to get one or two floats, you'll get abysmal performance.
memcpy size 256: 41.11 ns/float (10.5 us)
memcpy size 1024: 10.91 ns/float (11.2 us)
memcpy size 4096: 2.95 ns/float (12.1 us)
memcpy size 16384: 1.01 ns/float (16.6 us)
memcpy size 65536: 0.53 ns/float (34.7 us)
memcpy size 262144: 0.41 ns/float (108.3 us)
memcpy size 1048576: 0.38 ns/float (401.3 us)
memcpy size 4194304: 0.38 ns/float (1574.1 us)
GPU write size 64: 200.15 ns/float (12.8 us)
GPU write size 256: 50.37 ns/float (12.9 us)
GPU write size 1024: 12.65 ns/float (13.0 us)
GPU write size 4096: 3.21 ns/float (13.2 us)
GPU write size 16384: 0.85 ns/float (13.9 us)
GPU write size 65536: 0.25 ns/float (16.5 us)
GPU write size 262144: 0.10 ns/float (25.7 us)
GPU write size 1048576: 0.06 ns/float (62.8 us)
GPU write size 4194304: 0.05 ns/float (210.4 us)
#include <cuda.h>The surprising part about this is the timing breakdown:
#include <iostream>
#include <fstream>
#include "lib/inc.c" /* NetRun utility functions, like time_in_seconds */
#define check(cudacall) { int err=cudacall; if (err!=cudaSuccess) std::cout<<"CUDA ERROR "<<err<<" at line "<<__LINE__<<"'s "<<#cudacall<<"\n";}
/* GPU Code! */
__global__ void fill_in_array(float *arr,int wid) {
int i=threadIdx.x+blockDim.x*blockIdx.x; // my thread's global number
int x=i%wid, y=i/wid; // my thread's pixel to work on
float cr=x*1.0/wid, ci=y*1.0/wid;
float zr=cr, zi=ci;
int count;
const int max_count=256;
for (count=0;count<max_count;count++) {
// z= z*z+c
float nzr=zr*zr-zi*zi + cr;
float nzi=2.0*zr*zi + ci;
if ((nzr*nzr+nzi*nzi)>4.0) break;
zr=nzr; zi=nzi;
}
arr[y*wid+x]=count;
}
/* Run on CPU */
int main(int argc,char *argv[]) {
int wid=512,ht=512;
float *arr=0; /* LIVES ON THE GPU!!!! */
double start=time_in_seconds(), elapsed;
check(cudaMalloc((void **)&arr, wid*ht*sizeof(float)));
elapsed=time_in_seconds()-start;
std::cout<<"Allocated array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
start=time_in_seconds(); // <- reset the timer!
int threadsPerBlock=512;
int nBlocks=wid*ht/threadsPerBlock;
fill_in_array<<<nBlocks,threadsPerBlock>>>(arr,wid);
check(cudaThreadSynchronize()); // look for errors in kernel
elapsed=time_in_seconds()-start;
std::cout<<"Rendered array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
float harr[wid*ht];
check(cudaMemcpy(harr,arr,wid*ht*sizeof(float),cudaMemcpyDeviceToHost));
elapsed=time_in_seconds()-start;
std::cout<<"Copied out array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
std::ofstream of("out.ppm",std::ios_base::binary);
of<<"P5\n"; // greyscale, binary
of<<wid<<" "<<ht<<"\n"; // image size
of<<"255\n"; // byte image
for (int i=0;i<wid*ht;i++) {
char c=(char)harr[i];
of<<c;
}
return 0;
}
Allocated array: 152.6ns/pixel, time 0.040 secondsThe biggest surprise is the cudaMalloc time, which is ridiculously huge because this is the first CUDA call in the program, so the driver has to locate and set up the graphics card. Adding a "dummy" cudaMalloc of four bytes reduces the allocation time to less than a nanosecond per pixel.
Rendered array: 3.4ns/pixel, time 0.001 seconds
Copied out array: 10.6ns/pixel, time 0.003 seconds
float cr=texcoords.x, ci=texcoords.y;
float zr=cr, zi=ci;
int count;
const int max_count=256;
for (count=0;count<max_count;count++) {
// z= z*z+c
float nzr=zr*zr-zi*zi + cr;
float nzi=2.0*zr*zi + ci;
if ((nzr*nzr+nzi*nzi)>4.0) break;
zr=nzr; zi=nzi;
}
gl_FragColor=vec4(count/255.0);
Here's the same code, written for a multicore CPU using
OpenMP. On my quad-core Q6600, this runs in about 130ns/pixel,
which is about 38x slower than CUDA on the GPU. Even counting
time for the cudaMemcpy, the GPU advantage is still over 12x.
#include <iostream>Modern graphics cards are *very* fast!
#include <fstream>
#include "lib/inc.c" /* NetRun utility functions, like time_in_seconds */
const int wid=512, ht=512;
int render_mandelbrot(int x,int y)
{
float cr=x*1.0/wid, ci=y*1.0/ht;
float zr=cr, zi=ci;
int count;
const int max_count=256;
for (count=0;count<max_count;count++) {
// z= z*z+c
float nzr=zr*zr-zi*zi + cr;
float nzi=2.0f*zr*zi + ci;
if ((nzr*nzr+nzi*nzi)>4.0f) break;
zr=nzr; zi=nzi;
}
return count;
}
/* Run on CPU */
int main(int argc,char *argv[]) {
double start=time_in_seconds(), elapsed;
unsigned char *arr=new unsigned char[wid*ht];
elapsed=time_in_seconds()-start;
std::cout<<"Allocated array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
start=time_in_seconds(); // <- reset the timer!
#pragma omp parallel for schedule(dynamic,10)
for (int y=0;y<ht;y++)
for (int x=0;x<wid;x++)
arr[y*wid+x]=render_mandelbrot(x,y);
elapsed=time_in_seconds()-start;
std::cout<<"Rendered array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
start=time_in_seconds(); // <- reset the timer!
std::ofstream of("out.ppm",std::ios_base::binary);
of<<"P5\n"; // greyscale, binary
of<<wid<<" "<<ht<<"\n"; // image size
of<<"255\n"; // byte image
of.write((char *)&arr[0],wid*ht);
elapsed=time_in_seconds()-start;
std::cout<<"Wrote out array: "<<elapsed*1.0e9/(wid*ht)<<"ns/pixel, time "<<elapsed<<" seconds\n";
return 0;
}