
THE HAZARD NOTIFICATION SYSTEM (HANS)

BY

SETH FRANK SNEDIGAR

B.S., Montana Tech of the University of Montana, 2001

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Department of Computer Science of the
University of Alaska, Fairbanks, 2009

Fairbanks, Alaska

TABLE OF CONTENTS
TABLE OF CONTENTS .. 2
INTRODUCTION ... 3
PREVIOUS VERSIONS ... 3

HANS v0.1 ... 4
HANS v1.0 ... 4
HANS v2.0 ... 4

ADDITIONAL FACTORS FOR A NEW SYSTEM .. 5
v3.0 REQUIREMENTS & DESIGN ... 5

Data Entry Module ... 6
Product Format Module ... 8
Product Transmission Module ... 8
Data Synchronization Module ... 9

SOAP ... 9
WSDL .. 10

Data Types ... 10
Ports ... 11
Messages .. 12
Bindings ... 13

DATA OBJECTS ... 13
DATA TRANSFER ... 14

Slave to Master .. 14
Master to Slave .. 14
Data transfer performance .. 17
Data transfer security ... 17

DATA QUEUE .. 17
DATABASE SCHEMA .. 18

Background Tables .. 18
HANS Tables ... 18

LOGGING ... 19
WORK AND DATA FLOW ... 20
DEPLOYMENT .. 21
ADMINISTRATION ... 22

Installation .. 22
Database Installation .. 23

Configuration ... 23
Upgrading .. 23

CONCLUSION AND FUTURE WORK .. 24
Example VAN .. 26
Example VONA ... 28

REFERENCES .. 30

- 2 -

INTRODUCTION
This paper describes the Hazard Notification System (HANS), a networked system for
distributing volcanic activity information collected by scientists to pilots, emergency
services, and the general public.

There are five officially sanctioned volcano observatories in the United States – the
Alaska Volcano Observatory (AVO), with offices in Fairbanks, AK and Anchorage, AK,
the Cascades Volcano Observatory (CVO), based out of Vancouver, WA, the Hawaiian
Volcano Observatory (HVO), headquartered near Volcano, HI, the Long Valley
Observatory (LVO), based in Menlo Park, CA, and finally the Yellowstone Volcano
Observatory (YVO) based in Menlo Park, CA and Salt Lake City, UT. Heading up all
these observatories is the Volcano Hazards Program (VHP), a United States Geological
Survey (USGS) program based in Reston, VA.

The VHP monitors active and potentially active volcanoes, assesses their hazards,
responds to volcanic crises, and conducts research on how volcanoes work to fulfill
Congressional mandate P.L. 93-288 – that the USGS issue “timely warnings” of potential
volcanic hazards to responsible emergency-management authorities and to the populace
affected [11].

Each observatory constantly releases official volcanic information to the general public
and interested parties, as part of fulfilling the congressional mandate. This information is
released in a specifically formatted text document, the contents of which are emailed to
various subscription lists, faxed to dozens of fax machines, and posted to many websites
throughout the internet.

While all observatories held to a somewhat common formatting model, no two
information products from any particular observatory were very similar. Also, the
method of storing and cataloging these released products varied greatly among the
observatories. In late 2005, a variety of events initiated talkdiscussions of a system
which could help all observatories release their information in a unified format, and store
it in an easily retrievable and searchable manner. This was the beginning of the Hazard
Notification System (HANS). As a matter of simplification, the HANS will henceforth
be referred to as simply HANS, rather than the HANS.

The AVO was selected to develop this system, as they have the necessary resources to
put towards a project like this, as well as plenty of volcanic activity on which to test the
various information products that would be created and disseminated by HANS.

PREVIOUS VERSIONS
One of the reasons AVO was selected to lead the development of HANS was that they
had developed and used several prior versions of a HANS-type system. We call these
versions v0.1, v1.0, and v2.0.

HANS v0.1
HANS v0.1 could barely be considered a system. An AVO scientist would open up the
Microsoft Word application, and begin creating the information release by hand. Once
they had crafted the report, they copied the text into an email client and manually sent out
the email to a distribution list. Then they printed out the document and faxed the
document using an online fax distribution service. Finally, they called the webmaster of
the AVO website, and the webmaster would update the appropriate web pages with the
latest information.

This method was very prone to error, as the scientists would often just reuse the last
information release document, but would forget to change volcano names, timestamps,
etc. It was also fairly labor intensive, especially during times of heightened volcanic
activity, when several releases were often put out per day, and the webmaster would be
required to make constant changes to the website.

HANS v1.0
In 2004, AVO hired an Analyst/Programmer, the author, to take over the development
and maintenance of the AVO public website (http://www.avo.alaska.edu). One of the
first things developed by this programmer could be considered the first version of HANS.
This version still required a scientist to create the original document in Word, or some
other text editor, but then the scientist could paste the text into a web form, submit the
form, and the system would update a database, which would in turn update the necessary
web pages, as well as send out appropriate emails.

While this system did not solve the formatting issues, it did help remedy some of the
labor intensive portions required of releasing updates, primarily the constant need to
manually update the website.

HANS v2.0
In mid 2005, a requirement was given to all volcano observatories that they would need
to release their information formatted to fit the Common Alerting Protocol (CAP). CAP
is an XML based data format for exchanging public warnings and emergencies between
alerting technologies [2]. CAP messages are formatted into several fields within the
XML document, and are transmitted to a national database storing disaster information.
This national system is called the Disaster Management Interoperability Services
(DMIS).

AVO volunteered to lead the development of a system that would fulfill this requirement,
as well as test the new release format for the other observatories. Since the CAP format
required each message to be broken up into multiple fields, the new system required
information releases to be broken up into different sections to fit those fields in the CAP
message. However, the observatory still wanted to release information in the original
formats using the same text inputted. As such, a requirement of the new system was to
have one data entry form, and multiple product outputs from that form.

http://www.avo.alaska.edu/

AVO created the database structure and web system to allow users to enter their
information in one place, and submit both the original release and the associated CAP
formatted textual output. While this system served the purpose of creating multiple
products, transmitting data to the DMIS servers, and solving the formatting issues
mentioned earlier, it proved fairly difficult to use, and quite unwieldy when trying to
export the software to work for different observatories.

ADDITIONAL FACTORS FOR A NEW SYSTEM
Since their inception, the US volcano observatories have generally used a color code
system – GREEN, YELLOW, ORANGE, and RED – to assign a code to the level of
activity occurring at a particular volcano. However, the criteria for assigning a particular
color code to a volcano focused primarily on the hazards to aviation around the volcano.
In 2006, the USGS moved from using the term “color code” to the term “aviation color
code”, and added a new classification system called the volcano alert level [3]. The
volcano alert level uses a four-tier system – NORMAL, ADVISORY, WATCH, and
WARNING – to classify a volcano’s activity with respect to hazards that may impact
people on the ground. Thus, activity at a volcano is classified regarding hazards to
aviation and hazards to people on the ground. HANS v2.0 was modified to implement
this change to the volcano activity classification system. The modification was only a
slight change, but still fairly difficult to implement.

The final straw for v2.0 came in 2007 when the International Civil Aviation Organization
(ICAO) working with VHP personnel developed a standardized template for releasing
volcano information to the aviation community. This template, called the Volcano
Observatory Notice for NotificationAviation is formatted exactly the same between
observatories, and outlines current volcanic activity hazards that relate to aviation [4].
Complementing the VONA, is another template: the Volcano Activity Notification, or
VAN. The VAN is similar to the VONA, different only that it is designed to convey
information about volcanic hazards to those people on the ground. These products are
expected to be generated from the same information (so the user only has to enter
information once), then sent off to separate locations, as each product is formatted
specifically for its appropriate industry.

HANS v2.0 could have been modified to accommodate these two new reports, but at this
point it was painfully obvious that the current system was inflexible, and a ground-up
rewrite would be much easier and would return much better results than attempting to
modify the existing system.

v3.0 REQUIREMENTS & DESIGN
This project involved the design and implementation of HANS v3.0. HANS v3.0 is
designed primarily to be flexible. As has been seen before, new products may be
required of the observatories quite frequently. Thus, the system needs to be able to easily
accommodate new formatted products, while remaining as user friendly as possible. The
system should allow scientists to choose the appropriate product, enter the information
necessary for that product, then release that information through the appropriate channels.

The system will also archive all released products in a searchable database. This
database can be searched by both scientists internal to the observatories as well as the
general public. Finally, the system will be fault tolerant – information will be
synchronized across several systems.

This fault tolerant capability will be useful for several reasons. The primary reason is due
to network failures. These network failures may occur for two reasons – failure due to
hardware issues, and failure due to server overload. The second issue has already
occurred at AVO during the early 2009 eruption of Redoubt volcano. High levels of
earthquake activity prompted AVO to raise the color code and alert level of Redoubt;
news of this heightened activity spread nationwide, and directed a flood of traffic towards
the AVO webserver, which promptly slowed to an unusable crawl. AVO was able to use
a HANS instance running on an unaffected server to keep releasing information about the
volcano through the proper channels. (Of course, this crash may have been prevented
through more robust server systems, which will hopefully be deployed in the near future.)

Also, as data is synchronized across all HANS instances, this can be considered a simple
backup scheme. In the case that a system should suffer a massive disk failure, with no
working backups, all released information for all observatories will still be recoverable
from the other instances.

To accommodate all these requirements, HANS has been logically designed as four
separate modules.

Data Entry Module
The data entry module interacts with the user as they enter their data into the database.
The user is able to choose the observatory their report will be for, the type of report they
want to send out, and the volcano or volcanoes the report will cover. Once these early
parameters are chosen by the user, they are then taken to a data entry page with the
necessary form fields to complete the type of report they have chosen. This data entry
page is pre-filled in with the data that was sent out in the last release. Thus, if a user is
entering daily updates about a specific volcano, the information pre-filled in will be from
the day before. This can greatly reduce the amount of typing the user has to do,
particularly if not much has changed at the volcano.

Figure 1: This figure shows the data entry module for a VAN/VONA for Okmok
volcano.

As the user enters their data into the various forms for the associated volcanoes, they are
able to choose an option to preview their release. This preview mode inserts all the data
the user has entered in so far into a series of preview tables in the database. From there,
the product format module pulls information from the preview tables and displays the
report to the user as it exists at the time.

This report preview serves two purposes – one, it allows the user to see what their report
looks like, and two, it saves the data for the user so they can logout of the system, and
return to work on their report at a later time.

Figure 2: Report preview screen. User can look at their finished product so far, and go
back to the editing form if needed. If the user is satisfied with the report, they can submit
the report.

Finally, when the user is satisfied with their report, the data entry module enters the
user’s data into the production tables in the database, and notifies the product
transmission module that a new release has been entered, and needs to be sent to the
appropriate places.

Product Format Module
A wide range of formatted text products are created in HANS. The product format
module takes in data entered by a user in the data entry module, and formats the data into
the specific type of report requested by the user. This module must be flexible enough to
accommodate new report formats that may be developed in the future.

Product Transmission Module
When a user submits a report, the data and the type of report created is sent on to the
product transmission module. The transmission module then interacts with the product
format module to create the necessary report types and send those reports on to the
appropriate places.

For example, suppose a volcano is beginning to appear restless – the activity is starting to
grow beyond background levels. If the observatory chooses to change the aviation color
code and volcano alert level at the volcano, they will need to release a VAN and VONA.
The scientist on duty at the time enters the appropriate information into the web forms,
and submits the report. Once the report is submitted into the database, the transmission
module calls the product format module and creates the formatted VAN product, VONA

product, and CAP product. The module then emails the VAN to the appropriate general
hazards email list, emails the VONA to the appropriate aviation email subscription list,
and inserts the CAP data into a queue destined for the DMIS servers. Finally, the
transmission module turns the data over to the synchronization module, where it is sent to
all other HANS instances.

Data Synchronization Module
One problem that has been nagging the VHP is fault tolerance. If one observatory’s
computer systems were unavailable for any reason, they would be unable to release their
information except vocally over the phone. HANS v3.0 attempts to solve this problem
through the data synchronization module and multiple instances. When a report is
released, or a change made to information stored within HANS, the data synchronization
module transmits the data to all other known installations of HANS. Data transmission is
accomplished using the Simple Object Access Protocol (SOAP). The SOAP format and
associated processes are described in the next section.

Figure 3: Logical view of the different modules and operations in HANS. The data entry
module is located within the webform, where the user enters their data.

SOAP
SOAP [14] (originally known as Simple Object Access Protocol) is the protocol used for
data transmission between HANS instances. SOAP is a simple, lightweight protocol for
structured and strong-type information exchange in a decentralized, distributed
environment [1]. The use of SOAP helps overcome a multitude of obstacles that would
normally be seen in the network situation presented to HANS. Due to the interagency

nature of the volcano observatories, there are typically several firewalls and security
layers between servers and the internet.

Although SOAP works well over a number of different web-type protocols (ftp, smtp,
etc.), it is well suited to run over the primary web protocols – http and https (ports 80 and
443, respectively). Each observatory maintains its own web site, and thus has a possible
entry into HANS. Using SOAP can help alleviate any problems that firewalls and agency
policies may bring up [5].

Each observatory maintains their own computer systems, using their own update
schedules and operating systems of choice. Due to the interoperable nature of SOAP, the
operating system or database version does not particularly matter. Currently, each
observatory uses MySQL as the database management system (DBMS). However, if an
observatory used a different DBMS, the SOAP messaging would stay the same, but the
code used to process the SOAP messages would need to be changed slightly to
accommodate the different DBMS.

WSDL
The basis for SOAP operation is the Web Services Description Language (WSDL) [15].
(WSDL is not required to use SOAP, the protocol can be used on its own, but the WSDL
can make operations, such as the ones seen in HANS much easier to define and use.) The
WSDL file is an XML based document which describes services offered by a particular
host machine. The WSDL file can be compared to the header file for a C++ class.
Clients connecting to the host are able to discover what functionality that particular host
offers. In HANS, each individual node can act as either a SOAP client, or a SOAP
server, so each node offers identical services, from nearly identical WSDL files.

The WSDL file can be broken down into four sections: types – the data types used by the
service, messages – the messages sent by the service, bindings – the communication
protocols used by the service, and ports – the operations performed by the service.

Data Types
The data types are the native formats of the data encoded before the data is sent across
the network to a receiving host. There are multiple methods of encoding data types; three
different encodings were explored in developing HANS.

The first encoding method is a one to one mapping of fields within a particular database
table to elements of a complex sequence in the WSDL file. Thus, a single complex
element represents a single row in the table. SOAP libraries generally have error
checking built in; using this type of data encoding guarantees that the data sent to or from
a server will have exactly those fields specified in the WSDL file. Any extra fields added
to the message, or fields missing from the message will cause the library to throw a
SOAP exception.

One drawback to this encoding method is that it is tightly linked to the database. If any
changes are made to the database schema, the WSDL file will need to be changed to

match the new schema. However, this limitation can be overcome by using a
dynamically generated WSDL file, where the complex elements representing tables can
be created by sing a SHOW COLUMNS query on the necessary tables.

The second data encoding method involves a simple sequence of two elements – a field
name and field value – modeling a tuple in the database. When multiple sequences of
tuples are combined as an array, a table in the database can easily be represented. This
method is quite flexible, but leaves the error checking and handling up to the
programmer.

The final data encoding method is the method primarily used in HANS. This method
consists of a complex element made up of three string elements. The first string is the
serialized representation of an object destined for a remote host. The second string
simply states what type of object has been serialized. The third string consists of the host
id of the server that is sending the data. This method is also quite flexible, and makes
adding objects to be sent much easier. Rather than making changes to the WSDL file on
all servers, the developer only needs to write code that generates a message, and code to
receive and parse that generated message. However, this method relies on the scripting
language chosen to serialize objects, forcing all servers to use the same language.

Figure 4: Generic object data type primarily used in HANS, as defined by the WSDL
file.

When sending a single row from a table as an object, the encoding is fairly simple, the
system only needs to retrieve that row, encode it as an object, then serialize the object.
However, when a data object involves more than one table, as found when a table
contains foreign keys to other tables. A single complex element may include all columns
from a particular table, as well as arrays of columns from other table definitions. In the
WSDL file, complex elements can be nested inside each other as far as needed to match
the database schema. In HANS, the largest object consists of data from three separate
tables. The function used to create the object representation and serialize the object pulls
one row from the primary table, and all associated rows from linking tables.

Ports
The port type section of the WSDL file defines what operations or services are available
on a particular host. There may be several operations defined for each data type in the
WSDL file. In HANS, a maximum of four operations are defined for each data type:

two PUT operations, and two GET operations. A PUT operation describes a push of data
to a SOAP server from a host, while a GET operation describes a pull of data from a
SOAP server to a host.

Figure 5: Two put operations defined in the HANS WSDL file. The putObject
operation defines a push of a single object, while the putObjects operation defines the
push of multiple objects.

HANS SOAP operations are quite similar in definition. Since the primary data encoding
involves serialized objects, four operations are defined for this encoding. There are two
operations for each data direction (to the server, and from the server). There is an
operation for sending a single data object to a server, and retrieving a single data object
from a server. Then there is an operation for sending multiple data objects at a time to a
host, as well as retrieving multiple data objects at a time from a host.

Messages
Each port (operation or service) requires at least one message defining what kind of data
should be sent or received from the server. Each individual message can contain many
parts; these parts can be considered the “arguments” that are given to the SOAP operation
mentioned above. These arguments can be any basic xml data type, or any data type
defined in the “types” section of the WSDL file.

Generally speaking, an operation will have two messages: a request message, and a
response message. The request message travels from the connecting host to the SOAP
server, while the response message travels from the server to the connecting host. If a
host is requesting data from a server, the request message typically contains a simple
string describing what type of data is needed. The response message contains the data
requested by the host.

Figure 6: Messages defining a singular object retrieval (getObject), and a multiple
object retrieval (getobjects).

Bindings
The final section in the WSDL file is the bindings section. This section describes where
the SOAP service is located, and what protocols are used to transfer the data [15]. SOAP
works with many protocols, as mentioned before, http(s) is used as the data transfer
protocol, and rpc as the binding style.

DATA OBJECTS
Once the distinct data types that the SOAP service will transfer back and forth have been
defined, code needs to be written to create and modify these objects representing these
data types. HANS defines a class for each distinct object that will be transferred among
HANS instances. Each class has four functions besides the constructor function – an
insert function, update function, duplicate function, and changed function.

The constructor function simply creates a standard data object, with each database field
associated with the object as a public accessible variable. If multiple tables are involved,
the subtables associated with the primary table are created as array variables. If a
database table key is passed to the constructor, the object is created with the data
retrieved from the database matching the key. Otherwise, the object is created with all
fields empty.

The insert function inserts new data into the relevant tables in the database. If an object
requires data to be entered into multiple tables, the insert function must take into account
the order in which data should be inserted. However, before the insert function proceeds
with an y insert queries, it first runs the duplicate function.

The duplicate function merely checks to see if the receiving host already has the passed
data in its own database. If a duplicate row is found in the database, the object attempts
to update the data in its own database, by calling the update function.

The update function updates a row already in the database. If an object needs to store
data in multiple tables, the update function must take into account all associated tables,
and update them as necessary. However, before the update function proceeds, it calls the
changed function.

The changed function checks to see if the data in the object received is newer than the
data in the database. All objects stored in the database have a last_update field which
holds the UTC timestamp of when that particular object was last updated. If the received
data has a more recent timestamp, then the database is updated with the new data, and a
successful update message is returned to the sender. If the data in the database is more
recent, nothing is changed and a no change needed message is returned to the sender.

If any errors are reported during any of the object operations, a detailed error message is
returned to the connecting host and logged in a file on the host on which the error
occurred. The actual implementation of object functions can vary between data types,
depending on the data involved. For example, a duplicate function may take many
parameters to check if a row is already in the database, or it may only take a single id
variable.

DATA TRANSFER
Actual data transfer within HANS occurs at scheduled intervals and at user request.
Whenever a user makes a change to specific data in the system, or adds new data to the
system, the user is presented with the option to update the master server, or, if the user is
actually working on the master server, the option is given to update all slave machines.

Slave to Master
When users choose to edit specific information on a slave server (information specific to
an observatory for example), they may want the edited information to propagate to all
other HANS servers. The editing web form provides a checkbox that allows the user to
choose if they want their submission to travel to the master server. After the form has
been submitted, the slave server updates its own internal database. If the user has
selected the option to transmit data to the master, the slave immediately attempts to
connect to the master server. If the connection is successful, the slave then sends the
changed data to the master, and reports back to the user on the success of the data transfer
and subsequent data insertion into the master’s database. If the connection is not
successful – due to a network outage or any other matter – the slave server inserts the
data into a queue for later transmission attempts.

Master to Slave
When the master receives a data transmission from a slave server, as mentioned above, it
immediately attempts to update its own database. This process works as follows. During
data transmission, the slave sends a serial representation of the data object, as well as the
type of data object being sent. The master receives both strings of data, creates an empty
object of the type being passed, unserializes the passed data, then attempts to insert the
data using the empty object’s insert function. This function checks for duplicate data,
and inserts new data if no duplicates are found. If a duplicate is found, then a check is

made to see if the data has changed, based on UTC timestamps. If the data has changed,
it is updated with the newly received data.

Once the master has finished processing the data, it returns a result message back to the
sending slave server. Then, it attempts to send out the newly received data to all slaves
(except the slave whence it received the data). For each slave in the master’s database,
the master attempts to send the data. If the transmission is successful, the master logs the
message into its log file. If the master is unable to connect to the slave, it just inserts the
data into its own queue for later transmission.

Figure 7: Flowchart of a servers processing as it receives a message from another server.

HANS uses the PHP scripting language to send and receive data via SOAP operations.
One limitation of PHP is its inability to fork and spawn child processes, except in limited
situations [9]. Since data reception, database updating, and data retransmission to slaves
all occur within the same process, the master does not actually return any data to the
slave until it has finished all database processing, and all subsequent sends of data to
slaves. This means that the slave server could wait for quite a long time before a
response is received from the master server. A forkable server side language that
processes the SOAP reception and transmission could solve this issue; in HANS, PHP
executes a system call which starts another php process running in the background. This
background process executes the data transmission to all other slaves, so the primary
process can return the appropriate message to the initial sending slave.

Data transfer performance
Performance is not typically an issue in HANS. Updates are sent infrequently, at most
once or twice per hour. However, should the need arise to send data more frequently,
studies have shown that SOAP can handle large amounts of data transferred over a short
period of time [7].

Data transfer security
Security during data transfer in HANS has only been lightly considered, as the data is
already considered public information, and there is no benefit to intercepting the data.
However, a malicious user could possibly intercept the data stream, and change the
contents of the data being transferred [10]. Also, there are web page passwords involved
in data transmission that need to be kept encrypted. As such, HANS transmits all SOAP
data through the secure socket layer (SSL). This allows data to be encrypted between the
sending and receiving server.

DATA QUEUE
The queue is an integral part to the SOAP messaging process in HANS. If a message
fails to reach a server, the sending server inserts that message into its queue for
retransmission. The queue itself is a simple table in the database. Each row in the table
stores a single serialized object string, the type of the object, the id of the host the object
is destined for, and a timestamp marking the last attempt to send the object to the
recipient.

Running the queue is a simple process. The host simply selects all data in the queue,
ordered by destination. Then it simply goes through the data line by line, attempting to
connect to the host and send the data. If the transmission is successful, the item is deleted
from the queue. If not, the last attempt timestamp is updated, and the host machine tries
again at a later time.

To speed up processing of the queue, the host running the queue creates a background
process for each destination host in the queue. Thus it can transfer data concurrently,
rather than in a serial manner. The queue is generally started by cronjob on the host

machine, running however often deemed necessary by the system administrator. It can
also be started manually through the web interface to HANS.

DATABASE SCHEMA
Behind the scenes of HANS and integral to the entire operation of HANS is the database.
There are currently twenty-four tables in the database; five tables are duplicate copies
functioning as preview tables. Several tables contain background information used
within HANS, but not necessarily used solely by HANS.

Background Tables
The volcano and volcano_background tables contain information about all volcanoes
monitored by the observatories in the United States. HANS uses this information to
describe particular volcanoes in reports by reporting elevation, latitude and longitude, and
boilerplate description text. Information in these tables changes rarely, by other means
besides HANS.

The current_codes table contains current volcano alert level and aviation color code data
for all monitored volcanoes. The previous_codes table contains the previous volcano
alert level and color code data for those same volcanoes. While this does not meet
typical standard database normalization levels, these values are used throughout HANS
and in several VHP webpages, so breaking the data up into these two different tables
makes it much easier for other developers who may use the data.

Finally, tblusers contains user data for those users authenticated to use HANS. The table
name is a hold-over from previous versions of HANS, as well as many other tools used
internally to the observatories. Changing the name would require either storing duplicate
information about usernames and passwords, or changing several other applications to
accommodate the change. A new generic user login and authentication system is now
being worked on within the VHP.

HANS Tables
The primary table storing release information is the notice table (and complementing
notice_preview table). This table stores information unique to each notice or release.
Several other tables store information associated to releases in the notice table. The
notice_text (and notice_text_preview) tables store information that may be related to
multiple releases. For example, AVO releases a Daily Status Report that contains
information related to all volcanoes at elevated activity codes. Each volcano in the report
has its own line in the notice table. However, each report often contains a header, footer,
and contact information. It’s redundant to store this information for each volcano, so it is
stored separately in the notice_text table. Text stored in the notice_text table is linked to
rows in the notice table through the notice_linker table (and notice_linker_preview table).
One notice_text row can be linked to multiple notice rows.

Hazards and observations are both important parts to information releases, and required
sections in the VAN and VONA. A list of possible hazards that can be reported is stored
in the hazards table, and an observation list is stored in the observations table. Items can

be added to these tables as needed. Text about selected hazards or observations are
stored in linking tables linking the text and hazard/observation with the associated row in
the notice table. These linking tables are notice_to_hazard (and
notice_to_hazard_preview), and notice_to_observation (and
notice_to_observation_preview).

The notice_contacts table stores contact information for scientists who may be listed in
an information release. This contact information is also used when sending out a notice
for review. Some specific types of information releases are often asked to be reviewed
by other scientists. HANS has the capability to send out emails to scientists listed in the
contacts table, asking them to review a release. Any comments they post on this release
are stored in the notice_comments table.

The hans_links table is a utility table. Scientists often add urls to other scientific sites in
the release text. The hans_links table simply allows the scientists to store those urls so
they can be easily accessed when entering information for a new release.

The obs table stores information about each of the observatories – the name, its
associated acronym, email addresses, identifying information, etc.

The hans_hosts and hans_queue tables are related to the operations of the
synchronization module. The hans_hosts table stores information about all the hosts that
are currently running a HANS instance – ip addresses, username and password, WSDL
file location, etc. The hans_queue table stores messages that were destined for a
particular host, but were not able to reach that host for any particular reason. Each
HANS instance attempts to send all messages in its own queue on a periodic basis.

The notice_mail table stored notice ids that have been released. This table will be used in
a later system – the Volcano Notification System (VNS). This system will allow users to
sign up to receive email notifications for activity at various volcanoes. The ids stored in
this table will allow the VNS to decide if it is appropriate to send that report to a
particular user.

Finally, the tblcapsend table stores notice ids destined for the DMIS system. This table is
also a holdover from HANS v2.0. The code that injected data into the DMIS database
was able to be ported to HANS v3.0 with very little modification; the table structured
stayed exactly the same.

LOGGING
HANS logs nearly all user and system activity to three separate log files, allowing
administrators to easily monitor and debug the system. The three log files each track a
different part of the system. The access log tracks function calls and database requests,
and the error log tracks all errors in the system, including interface errors and database
(SQL) errors. Finally, the soap log tracks all SOAP messages transmitted by a host
machine, as well as those messages received from other machines.

WORK AND DATA FLOW
There are several steps involved to creating and submitting a release of volcanic
information. To begin, a scientist looks at all data available for the volcanoes he or she is
interested in. These data streams typically include seismic and satellite data, and may
also include GPS data, images from webcams, and pilot reports. The scientist must then
synthesize all this data down into text readable and understandable by the general public.
Once the scientist has chosen the appropriate product and entered the data into the
necessary fields, they may choose to send the product off for review by other scientists in
the VHP. Once the product has been reviewed, the scientist submits the data to the
system. Here, the scientist’s job is virtually finished, except for submitting a document to
the fax system if necessary, or optionally checking to see if the correct web pages were
updated.

From the data submission by the scientist, the data has its own distinctive flow through
the system. If the scientist is submitted data to a slave server, the slave updates its own
internal database, then sends the data on to the master. When the master receives the data
from the slave, it updates its database, then transmits the data on to all slaves it knows
about (except for the slave it just received data from). Conversely, if the scientist has
submitted data directly to the master server, the master updates its own database, then
transmits data to all slaves in the system.

Figure 8: Example of how data might flow through HANS from user gathered data to the
master server to all slave servers.

DEPLOYMENT
Many open source tools and software have been used and are still being used in the
development and usage of HANS. Mentioned many times already is the Subversion
source code repository application [12]. All code and database schemas are stored in the
repository, allowing easy access to checkout the code, or to rollback to earlier versions if
necessary.

As HANS is a web-based system, it requires a webserver to operate. Any webserver
capable of running php code will serve the purpose of hosting HANS. The Apache http
server is the most popular web server on the internet [13], and is currently used on all
VHP machines to serve websites, as well as host HANS.

A database system is also needed for HANS to operate. MySQL is currently the world’s
most popular open source database [6]. The VHP has been using MySQL to serve their
dynamic websites for several years; integrating HANS into these existing MySQL
databases allows other programs to easily access data stored by HANS in the database.

Finally, the PHP scripting language is used to tie the database and webserver together,
producing the interfaces used by the scientists to enter data, as well as synchronize the
data between HANS instances. PHP is a widely-used general-purpose scripting language
that is especially suited for Web development and can be embedded into HTML [9].

Other secondary “languages” used in HANS include Structured Query Language (SQL),
for sending data back and forth from the database, Hypertext Markup Language (HTML),
for creating pages viewable by users using a web browser, Cascading Style Sheets (CSS),
for styling said HTML pages, and Javascript, used to provide a more interactive web page
to the user.

The choice to use the above open source software (OSS) packages was made for several
reasons. A primary reason of course is the cost of the software (free). As many of the
observatories are multi-agency operations (for example, AVO consists of personnel from
three agencies: USGS, UAFGI, and ADGGS) the procurement procedure to purchase
hardware and software is fairly complex. Using OSS products allows VHP developers to
use the latest tools and products available without needing to spend large amounts of
money on those tools and products. Also, due to the nature of OSS, the documentation
and examples available for the tools used is widely available and easily used. Finally,
those involved in the development of HANS are well experienced in the tools and
languages used.

ADMINISTRATION
HANS is fairly easy to administer. In the VHP setting, one individual should be able to
easily administer all HANS instances at all server locations – provided they are able to
access all installations. Even assuming that all observatories have their own installation
and backup installation, that brings the count up to ten installations, which is highly
unlikely to occur.

Installation and configuration are the primary areas where administration is needed,
although upgrades to the software may take a little time of an administrator’s day.

Installation
All source code for HANS is currently stored in a Subversion repository located on
AVO’s webserver. Assuming the Subversion software is installed in a remote system,
the recommended way to get the software is to simply check out the latest version from
the repository. If Subversion is not installed on the destination machine, then the
administrator can simply grab a zipped tarball of the source files from the AVO server.

Once the administrator has the source files either checked out or unzipped into a web
accessible directory, the administrator can then install the database schema.

Database Installation
The HANS database installer rests in the install directory of the source code. An
administrator can visit this directory in a web browser (we assume that the administrator
has already placed the code in a password protected directory). The installer presents the
administrator with a form allowing them to fill in a database host, username, password,
and name. Once the installer has been armed with this information, it attempts to connect
to the given database and create the necessary tables and fill them with installation data.

The source code contains a file that stores an SQL schema of all tables need by HANS,
with some table being pre-filled with data (such as the volcano and volcano_background
tables). The installation script looks at each table in the schema and checks if that table
exists in the given database. If the table does exist in the given database, the installer
then checks to ensure that table has all necessary fields. If any fields are missing, the
installer adds them to the table. If the table does not exist in the database, the installer
creates the table and adds any data needed to the table.

The installation script does not delete any tables or fields from tables, nor does it attempt
to add any extra data to tables which already have data stored in them.

Configuration
Once the administrator has retrieved the source code and installed the database tables,
they can move on to configuring the application. The configuration file is a simple php
file; HANS comes with a sample file called hans.inc.sample.php. The administrator
needs to copy this file to hans.inc.php, and make the necessary changes within the file.
Each line in the file is documented as to what type of information should be entered.

Once the HANS configuration has been completed, the administrator will most likely
want to add the current server into the network of other HANS instances. The
administrator should know the information for the HANS master server, and will be able
to enter this information into the Hosts section of the SOAP control panel. After adding
the HANS master server to the hosts section, the administrator should be able to connect
to the master and register the new host on the system, as well as being able to download
the most current information about other hosts on the HANS network and the latest
volcanic information transmitted by those hosts.

Upgrading
As with any software package, upgrades and bug fixes are an inevitable occurrence. As
bug fixes and upgrades are added to HANS, they will need to be propagated out to all
running HANS instances. All additions and changes to the software will be uploaded to
the Subversion repository hosted by AVO. Changes and additions to the database
schema will be made to the database at AVO, where the program to create the schema
that is read by the HANS installer is stored. Once the changes to the schema have been
made, the schema creator makes a new SQL schema file, where it can be added to the
source code repository.

If an instance is running code that has been checked out from the repository, all the
admin has to do is update to the latest version in the repository (simply issuing a svn
update command). This will update the code, and then the administrator needs to run the
database installer script. This will update and add any necessary fields and tables to the
database.

CONCLUSION AND FUTURE WORK
HANS is used everyday – often multiple times a day during times of high volcanic
activity – by VHP scientists. As such, suggestions are often made to increase the
usability and functionality of the system. These suggestions are vetted for their
usefulness and the complexity of adding them to the system. If the suggestion is deemed
useful and not too complex, it is added to the system immediately, or added to the HANS
TODO list.

Another project directly related to HANS is the Volcano Notification System (VNS).
This project is in the early stages of research and requirements gathering. The VNS will
allow individuals to customize the reports they want to receive via email from the various
volcano observatories. The VNS will take reports generated by HANS, determine if they
should be sent to the users signed up in VNS, and if appropriate, email the report to those
users.

While email plays an important role in information transmission, all information releases
are also faxed to several agencies that require information from the VHP. Currently, each
observatory has its own system and method of faxing information. AVO uses an online
fax system called Protus. While uploading a word document of the report to the fax
system is not highly complex, an interface to a fax system would remove one more thing
from the scientists to-do list.

Currently, any changes made to the product format module must be made directly to the
code, and any new products that are created must be added to the code. A templating
system added to HANS will allow users to create new reports directly from data in
HANS without requiring a developer to make changes to the code first. The templating
system would allow users to create new templates and store them in the database.

Finally, HANS could benefit from the addition of Web Service Security (WSS) [16] to
the messaging system. Relying on SSL encryption is a first step towards security, but
much could be done in the authentication of HANS instances with each other.

This paper has defined and identified what HANS is and how it works. The data
synchronization used within HANS is a useful feature, and while it is not meant to
replace true database replication, it does work to keep basic database systems updated
with each other. The features developed in HANS will be useful as the VHP program
moves towards more centralized applications, with each observatory hosting their own
slightly customized version of these applications.

APPENDIX

Example VAN
AVO/USGS Volcanic Activity Notice

Volcano: Okmok (CAVW #1101-29-)

Current Volcano Alert Level: ADVISORY
Previous Volcano Alert Level: NORMAL

Current Aviation Color Code: YELLOW
Previous Aviation Color Code: GREEN

Issued: Monday, March 2, 2009, 8:52 PM AKST (20090302/0552Z)
Source: Alaska Volcano Observatory
Notice Number: 2009/A5
Location: N 53 deg 23 min W 168 deg 9 min
Elevation: 3520 ft (1073 m)
Area: Aleutians Alaska

Volcanic Activity Summary: AVO is increasing the Aviation Color Code to YELLOW
and the Volcanic Alert Level to ADVISORY for Okmok volcano. Over the past 24 hours
there have been short bursts of volcanic tremor at Okmok volcano. These bursts are
occurring at a rate of one per hour on average. This is the first sign significant seismic
activity at the volcano since the cessation of eruption in August 2008 and represents an
increase above typical background activity.

This increase in seismic activity does not necessarily indicate that an eruption will occur,
or that an eruption is likely. Clouds currently obscure satellite views of the volcano.
However there is no evidence that an eruption has occurred. The AVO Operations Room
is currently being staffed 24/7 due to unrest at Redoubt Volcano.

Recent Observations:
[Volcanic cloud height] None observed.
[Other volcanic cloud information] None observed.

Hazard Analysis:
[General hazards] Unstable, muddy surfaces and slopes of new volcanic debris within the
caldera are prone to liquefaction and collapse. In addition, new lakes, ponds, and deep
craters with steep, collapsing banks present hazards to anyone visiting the caldera. The
interior of the new tephra cone was hot when imaged with an infrared camera in mid-
September. Volcanic gas was not measured; however, noxious gases could be present
around this new tephra cone. All drainages leading downslope from the rim of the caldera
should be considered hazardous as ash and other loose debris may be remobilized
suddenly by heavy rains. The Crater Creek drainage on the north-northeast flank of
Okmok should be avoided as it may experience sudden flooding events if water
impounded within the caldera breaches new tephra dams.

Remarks: Okmok volcano was in vigorous eruption from July 12 through mid-August,
2008. Energetic, intermittent ash emission from several vents within the caldera
blanketed much of the northeast portion of Umnak Island with ash and dusted
Unalaska/Dutch Harbor with fine ash on several occasions. Rain-induced remobilization
of debris from high on the volcano's flanks produced lahars down many drainages,
forming new deltas at the coastline. A new, 200-300 m-high (660-980 ft) tephra cone
developed inside the caldera at the primary eruption site. Since late August 2008,
seismicity at Okmok has generally declined. The last confirmed ash emission at Okmok
occurred on August 19, 2008.

Okmok volcano is a 6-mile-wide caldera that occupies most of the eastern end of Umnak
Island, located 75 miles southwest of Unalaska/Dutch Harbor in the eastern Aleutian
Islands. Okmok has had several eruptions in historic time typically consisting of ash
emissions occasionally to over 30,000 feet ASL but generally much lower; lava flows
crossed the caldera floor in 1945 and 1958. Prior to 2008, the volcano last erupted in
February 1997 producing lava flows and intermittent ash emissions over the course of
several months.

The nearest settlement is Nikolski, population about 35, roughly 45 miles west of the
volcano. A ranch caretaker family lives at Fort Glenn on the flank of the volcano about 6
miles east of the caldera rim.

Contacts: Tom Murray, Scientist-in-Charge, USGS
tlmurray@usgs.gov (907) 786-7497

Steve McNutt, Coordinating Scientist, UAF
steve@giseis.alaska.edu (907) 474-7131

Next Notice: A new VAN will be issued if conditions change significantly or alert levels
are modified. While a VAN is in effect, regularly scheduled updates are posted at
http://www.avo.alaska.edu

The Alaska Volcano Observatory is a cooperative program of the U.S. Geological
Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska
Division of Geological and Geophysical Surveys.

Example VONA
(1) VOLCANO OBSERVATORY NOTICE FOR AVIATION (VONA)
(2) Issued: 20090302/(0552Z)
(3) Volcano: Okmok (CAVW# 1101-29-)
(4) Current Color Code: YELLOW
(5) Previous Color Code: GREEN
(6) Source: Alaska Volcano Observatory
(7) Notice Number: 2009/A5
(8) Volcano Location: N 53 deg 23 min W 168 deg 9 min
(9) Area: Aleutians Alaska
(10) Summit Elevation: 3520 ft (1073 m)
(11) Volcanic Activity
Summary:

AVO is increasing the Aviation Color Code to
YELLOW and the Volcanic Alert Level to
ADVISORY for Okmok volcano. Over the past 24
hours there have been short bursts of volcanic tremor
at Okmok volcano. These bursts are occurring at a rate
of one per hour on average. This is the first sign
significant seismic activity at the volcano since the
cessation of eruption in August 2008 and represents an
increase above typical background activity.

This increase in seismic activity does not necessarily
indicate that an eruption will occur, or that an eruption
is likely. Clouds currently obscure satellite views of
the volcano. However there is no evidence that an
eruption has occurred. The AVO Operations Room is
currently being staffed 24/7 due to unrest at Redoubt
Volcano.

(12) Volcanic cloud height: None observed.
(13) Other volcanic cloud
information:

None observed.

(14) Remarks: Okmok volcano was in vigorous eruption from July 12
through mid-August, 2008. Energetic, intermittent ash
emission from several vents within the caldera
blanketed much of the northeast portion of Umnak
Island with ash and dusted Unalaska/Dutch Harbor
with fine ash on several occasions. Rain-induced
remobilization of debris from high on the volcano's
flanks produced lahars down many drainages, forming
new deltas at the coastline. A new, 200-300 m-high
(660-980 ft) tephra cone developed inside the caldera
at the primary eruption site. Since late August 2008,
seismicity at Okmok has generally declined. The last
confirmed ash emission at Okmok occurred on August
19, 2008.

Okmok volcano is a 6-mile-wide caldera that occupies
most of the eastern end of Umnak Island, located 75
miles southwest of Unalaska/Dutch Harbor in the
eastern Aleutian Islands. Okmok has had several
eruptions in historic time typically consisting of ash
emissions occasionally to over 30,000 feet ASL but
generally much lower; lava flows crossed the caldera
floor in 1945 and 1958. Prior to 2008, the volcano last
erupted in February 1997 producing lava flows and
intermittent ash emissions over the course of several
months.

The nearest settlement is Nikolski, population about
35, roughly 45 miles west of the volcano. A ranch
caretaker family lives at Fort Glenn on the flank of the
volcano about 6 miles east of the caldera rim.

(15) Contacts: Tom Murray, Scientist-in-Charge, USGS
tlmurray@usgs.gov (907) 786-7497

Steve McNutt, Coordinating Scientist, UAF
steve@giseis.alaska.edu (907) 474-7131

(16) Next Notice: A new VONA will be issued if conditions change
significantly or alert levels are modified. While a
VONA is in effect, regularly scheduled updates are
posted at http://www.avo.alaska.edu

REFERENCES
[1] Cenov, M. 2003. WAN Communication using SOAP protocol. In Proceedings of

the 4th international Conference Conference on Computer Systems and
Technologies: E-Learning (Rousse, Bulgaria, June 19 - 20, 2003). B. Rachev and A.
Smrikarov, Eds. CompSysTech '03. ACM, New York, NY, 406-410. DOI=
http://doi.acm.org/10.1145/973620.973688

[2] Common Alerting Protocol (CAP), 1.1, [http://www.oasis-open.org/specs/#capv1.1]
2005.

[3] Gardner, C. A., Guffanti, M. C., U.S. Geological Survey’s Alert Notification
System for Volcanic Activity: U.S. Geological Survey Fact Sheet 2006-3139, 4p.
[http://pubs.usgs.gov/fs/2006/3139].

[4] Guffanti, M., Brantley, S. R., Cervelli, P. F., Nye, C. J., Serafino, G. N., Siebert,
L., Venezky, D. Y., and Wald, L., 2007, Technical-information products for a
National Volcano Early Warning System: U.S. Geological Survey Open File Report
2007-1250, 23p. [http://pubs.usgs.gov/of/2007/1250].

[5] Jepsen, T., "SOAP cleans up interoperability problems on the Web," IT
Professional , vol.3, no.1, pp.52-55, Jan/Feb 2001

[6] MySQL Database software, http://www.mysql.com, 2008

[7] Pasteur, O.; Tuan Dang; Delon, P.-E., "Using Web Services to exchange power
plant process data," Industrial Informatics, 2007 5th IEEE International Conference
on , vol.1, no., pp.411-415, 23-27 June 2007

[8] Pautasso, C., Zimmermann, O., and Leymann, F. 2008. Restful web services vs.
"big"' web services: making the right architectural decision. In Proceeding of the
17th international Conference on World Wide Web (Beijing, China, April 21 - 25,
2008). WWW '08. ACM, New York, NY, 805-814. DOI=
http://doi.acm.org/10.1145/1367497.1367606

[9] PHP (Hypertext Pre-Processor) scripting language, http://www.php.net, 2008

[10] Rahaman, M. A., Schaad, A., and Rits, M. 2006. Towards secure SOAP message
exchange in a SOA. In Proceedings of the 3rd ACM Workshop on Secure Web
Services (Alexandria, Virginia, USA, November 03 - 03, 2006). SWS '06. ACM,
New York, NY, 77-84. DOI= http://doi.acm.org/10.1145/1180367.1180382

[11] Robert T. Stafford Disaster Relief and Emergency Assistance Act, P.L 93-288,
http://www.fema.gov/about/stafact.shtm, 2007

[12] Subversion version control system, http://subversion.tigris.org, 2008

http://subversion.tigris.org/
http://www.fema.gov/about/stafact.shtm
http://doi.acm.org/10.1145/1180367.1180382
http://www.php.net/
http://doi.acm.org/10.1145/1367497.1367606
http://www.mysql.com/
http://www.oasis-open.org/specs/#capv1.1
http://doi.acm.org/10.1145/973620.973688

[13] The Apache HTTP Server Project, http://httpd.apache.org, 2008

[14] W3C, Simple Object Access Protocol (SOAP), 1.2, http://www.w3.org/TR/soap/,
2007.

[15] W3C, Web Services Description Language (WSDL), 1.1,
http://www.w3.org/TR/wsdl, 2001

[16] WS-Security, Web Services Security, 2004 http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://httpd.apache.org/

	TABLE OF CONTENTS
	INTRODUCTION
	PREVIOUS VERSIONS
	HANS v0.1
	HANS v1.0
	HANS v2.0

	ADDITIONAL FACTORS FOR A NEW SYSTEM
	v3.0 REQUIREMENTS & DESIGN
	Data Entry Module
	Product Format Module
	Product Transmission Module
	Data Synchronization Module

	SOAP
	WSDL
	Data Types
	Ports
	Messages
	Bindings

	DATA OBJECTS
	DATA TRANSFER
	Slave to Master
	Master to Slave
	Data transfer performance
	Data transfer security

	DATA QUEUE

	DATABASE SCHEMA
	Background Tables
	HANS Tables

	LOGGING
	WORK AND DATA FLOW
	DEPLOYMENT
	ADMINISTRATION
	Installation
	Database Installation

	Configuration
	Upgrading

	CONCLUSION AND FUTURE WORK
	Example VAN
	Example VONA

	REFERENCES

