Anomaly-Based, Intrusion Detection Visualizations

By Kevin Phillip Galloway
B.S., University of Alaska, Fairbanks, 2008.

PROJECT
Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science
in the Graduate College of the
University of Alaska Fairbanks 2010

Table of Contents

Anomaly-Based, Intrusion Detection VisualiZations............cueercuieeriieenieeenieesieeeiieesieeesiee e 1
AADSTTACT. ..ottt et ettt e bt e b e e e bt e e e a bt e e e a bt e e e abe e e ab et e bt e e e ah bbbt e e e e e e anbraeeeens 3
ACKNOWIEAZEIMENTS.ceeiiiiiiiie ittt ettt e st e bt e st e e bt e e sttt e e e e eabbbbeeeeeenantraeeeens 3
L IEFOAUCTION. ...ttt st ettt e eb e st e bt e et e bt e sateesabeeeesnnaeeeeanee 3
1.1 Visualization INrOAUCTION.ccuiiiiiiiiiiiieiceeet ettt et e e 3
1.2 Problem STAEIMENT.coiiuiiiiiiieiiieeeieee ettt ettt et ettt e ettt e e bt e sabeeesabeeeeabeeeenteeseaanee 4
1.2.1 Sequential Order Of EVENTS........ccciiiiiiiieeiiieciie ettt estee et eeve e e ve e e e e etaeessaeesnraeennns 4

L.2.2 TeXEUAL DIAtaA.....ceiiiiiiiiiiieiie ettt ettt e st e st e st e e sttt e e e e e s ibtreeeens 4

1.3 PIOJECE SCOPE....eeneteineieriteeieeeite ettt ettt ettt ettt ettt st e a e et e sae e st e bt e e bt e saeesane e e e e e e e nanneees 5
R 5 1. Ted <24 101131 OSSPSR 5
2.1 REIAEA WOTK. ...ttt ettt e b e ettt et e bt e e st e e s aabeeeeeabeeeeas 5
2.2 VISUANZATON TEIINS. ...ceeiuiiiiiiiieeiiie ettt ettt ettt e et e st e s bt e e s bt e e sabeeesabeeesabeeesnneeeeeaannes 9
2.3 DALA SOUICES.....ceeuutieiitieeiiee ettt ettt et e et e e sttt e e st e e e bt e e e bt e e eabbeesabbeesabaeesabteesabeeeaanbateeeesannnes 10

B B0 B 5 (0] 115 010 OO SRRPSRRPPRP 10

232 PCAP FIIES....nniiieieeeee ettt ettt et sttt e 11

2.3.3 KDDCUP 1999 Daala.......ccceiiiiiiiiiiieiieeiieeeeeeet ettt s 11
3. OrIZINAL DIESIZN...ciiniiiiiiiiiiitee ettt ettt e e sttt e sab e e e bt e e e bt e e e bt e e e e abbtaeeeeeeanaae 12
4. EXPErimental DESIZN.....c.uiiiiiiiiiiiiiiieeiiie ettt ettt ettt sb e e st e et e e e at e e e st e e esteesnnbtaeeeens 13

4.1 THE PATSEI ...ttt ettt ettt ettt et e st e bt st e et e e st e e senee e e aneee 13
4.2 TRE VISUAIIZET ...ccutiiiiiiiieee ettt ettt et e st et esab e et esabeebeesaeeeaeee 15
4.3 KDDCup 1999 Data EXPErIMENL......ccueeiutiiiiiiieeiieiieeieeeite ettt ettt ettt siee b e siaesaabaeeeean 18
S. EXperimental RESULLS.c.c.ciiuiiiiiiiieeeeeeeee ettt ettt et e e e 20
5.1 SEDEK RESULLS. ...ttt ettt ettt e et e sttt e st e e st e e st e e st eesabaaeeee s 20
5.2 KDDCup 1999 Data RESUILS.......cccuiiiiiiieiiieeiieesie ettt ettt e st e e sabeesnaeesaaeeeeas 22
6. FULUIE WOTK....c.eeiiiiiiiee ettt ettt ettt e bt et e s be e sabeesbaeeanee s 23
APPendix A: VISUANZET USE......cooiuiiiiiiiiiiiiiiiiee ittt ettt e e e et e e e e e 23
INSTALIATION. ...ttt ettt e et e et e st e e et e e ettt e st e e e e asbre e e e e s 23
Reading the VISUAIIZATION.coiriiiiiiie ittt ettt e et e et e e et e e et e e ebaeesaaee s 24
CTEALNGZ @ PaATSEI...ccuiiiiiiiiiiiiie ettt ettt e st e e st e e st e e e s et e e e steeeabeesnsaeesnsaeesanaeeas 27
Chan@ing ParSeTsS........couiiuiiiiiiiiieit ettt ettt et sttt et ae et sanee e 29
GIOUPING FALES. ...ttt e ea e st e bt e st e e sbe e et e e e seabaeeeans 30
ApPPendix B: SOUICE COUE......coouiiiiiiiiiiieeiee ettt et e st s e e st e e st e e e e e aaaeaees 31
EVBIE DY ettt ettt ettt et e bt s be e e et et e eanreeenane 31
(€1 70101038 o) 2T OO PP PRSPPI 32
SIZ . PY . eutteeeuteeeette e et et e ettt e ettt e ettt e ettt e et e e et e e e teeeaateeeatbee e abee e abee e tbee e ateeenbaeeebeeeanaeeeeeannntanaaeeeennes 32
DIAW. DY ettt e b e e b e e e e aaee e s 33
VISUALIZET.PY .ottt sttt e st e bt et e ae e san e e e seanneeean 35

Abstract

Due to the large amounts of data and ever increasing number of new attacks, methods to quickly
investigate and analyze this data is incredibly important. In this paper we seek to demonstrate and
describe a visualization that will help researchers detect anomalies in data. A short case study is
included as well, discussing how this visualization may be used to quickly judge how useful an

algorithm is in finding anomalies.

Acknowledgements

First, I would like to thank my committee, Dr. Hay, Dr. Lawlor, and Dr. Chappell, for their help
on this project, and for igniting my love for this field. I would especially like to thank Dr. Hay who's
been a good sport when dealing with the abuse his graduate students have heaped upon him, and for
introducing me to the computer security field.

I would like to thank other graduate students: Brandon Marken, Brian Paden, Walker Wheeler,
Wesley McGrew, and John Styers, for listening to me ramble on about my project, for helping me shape
the visualization, and for listening in general.

Finally I would like to thank my fiancee, Michelle Vieira, for sticking with me as I went through

all this, and helping me keep focus, when my attention strayed from the project.

1. Introduction

1.1 Visualization Introduction

Due to the rapidly increasing amount of data in computer security, it is becoming imperative

that tools be created to quickly analyze and evaluate data. Visualization is one method to examine large
amounts of data, before further analysis, to get a high-level view, before deeper analysis happens. Most
visualization tools focus on easily quantifiable variables, such as those found in a packet capture. For
example, a packet capture can consist of packet length, port number, and other numerical data such as
these. These are typically numeric, and easily parsed, as each number is separate, and individually
grouped. However, there are a wide variety of tools that return data in simple strings, such as high
interaction honeypots and keyloggers, yet few tools that specifically parse or collate data from text, with

most work in this field simply listing the number of times that a word was listed.

1.2 Problem Statement

1.2.1 Sequential Order of Events

Many visualizations focus on analyzing trends over time, but do not focus on the sequential
ordering of events. The standard line graph, for example, will show an overview of its data source, and
the frequency of each category in its data source. However, for certain data sources, the order and
sequence of events is instrumental to understanding what exactly is happening with the data. In
command line data, for example, knowing the sequence of commands might shed some information on

what an attacker was trying to do, or if the attack was automated.

1.2.2 Textual Data

Textual data, as a whole, can be difficult to collate. There are numerous words in the English
language, for example, that are related in meaning, but not in letters. Take searching words that mean

“thin” in a body of text. Most simple parsers would simply keep track of how many times the word

“thin” appears in this text. However, a user might want to keep track of synonyms of thin, and group

them together, so words like “slender”, “thin”, and “lean” all contribute to the same value.

1.3 Project Scope

In this project, we provide a possible solution for each of these problems. We create a
visualization that displays each event in a dataset. We define an event as an entry in a line of data at a
particular timestep. Each event is displayed sequentially, showing the order of each event, what follows

and event, and what comes before an event.

In regards to dealing with the textual data, we created a flexible matching implementation, that
allows users to group keywords together. Users can also assign colors and the height displacement for

any event string that matches this group of keywords in the visualization.

The scope of this project is to create a system that will allow a user to easily link in a parser that
separates a piece of data into three variables: a timestamp, a source, and an event string. The parser
must be able to be written by a user, and easily connected to the visualizer, so that users may use any
data source they wish, and so that we do not have to write a parser for every data type. The visualizer

will display the events in a sequential line of points, with matched events being a user-defined color.

2. Background

2.1 Related Work

In 2004 Stefan Schlechtweg and Ragnar Bade, from the University of Magdeburg, and Silvia
Miksch from the Vienna University of Technology applied a Lifelines approach for time-oriented data

in the medical field. This technique used color and height to display critically elevated, elevated,

normal, reduced, and critically reduced qualitative levels for fever temperatures [1]. While not directly
related to computer security, a similar approach may be applied to security data. Many fields use
visualizations to analyze their data, and certain techniques are useful in multiple fields, such as the
Lifelines approach. Using both color and height to differentiate data helps to distinctly show the

different events in a data set.

oCc > 41.0 > 38.5 - < 38.5

Figure 1. Color-coded timeline representation of a fever
curve.

cc 4>41.0 + + < 38.5

Figure 2. Height-coded timeline representation of the
same fever curve as in Figure 1.

+ +

Figure 3. Height-coded timeline of critically elevated,
elevated, normal, reduced and critically reduced
qualitative levels.

k‘:'c >41.0 _'_}33.5- + < 38.5

Figure 1: Lifeline's Approach
H. Gunes Kayacik and A. Nur Zincir-Heywood of Dalhousie University applied Kohonen's Self-
Organizing Feature Maps algorithm to the KDD-Cup 1999 data to build a visual model of known
attacks. Instead of analyzing the the flow of information, that is, how the traffic moves from one

machine to the other, this algorithm focuses on attack behavior. One can compare the visual

representations of a known attack with potential zero-day attacks to examine if there are any similarities

[2].

dst.hos

dst.host.s:

Figure 2: KDD-Cup 1999 Anomaly
Visualization

KNAVE-II was created by Asaf Shabtai, Denis Klimov, Yuval Shahar, and Yuval Elovici in
2006 to visualize a group of subjects at various levels of abstractions [3]. Their tool handles both

individual and multiple subjects to create multiple graphs of different data sources and types.

Hour | Range | _Sublect List (Computer) | Close , (% Absots Tine Reierence porss = e
,__j_ - [m b 4 & ﬂji'"Seth.u'm]—z]_._J Enter Simulation Mode

Para Ehell STATE _ Computer-DenDigdudio_comp2 Lo oo el =) x |

| 2

i Y

[[E] J20 |22

Paraneless Regely Shel STATE Compuler DerDighydo coned— \ J B (7 P I

| @

iy

00 04 8 2 [iE___Jz |) [=___I=2 [E____J@ | [52 [56
05/15/2005 15h

Figure 3: Demonstration of Time Granularity Controls

SnortView was created by Koiki and Ohno [5] to display data taken from the intrusion detection

system, Snort. This visualization attempts to visualize data that is not simply numeric. Different alerts

that Snort outputs are represented by colored symbols, and lines represent the timeline of an event.

Source Address Source-Destination

Alert Frame i
Frame Matrix Frame
[EHEE | [(BRET FIEHER | [BEDM (Ta Mg [RTeb |
Faddress v | <] O:ter Tiiowr ®owed Elrme EEmw O EEmS 0 EEEE I o
B From Ciupp A Eoft @ Mall O:DNS
1510 e)
|H|.||!H|.|HIL!H\
00 T S R
5 5 0 5 e e e S]
IHIII\“IIH!\HH
IHIIIHHIHI!!\H
1 0 2 o
| | 1
) 5 T
] 515 O 5
.IH.I.I.I\1\I.IHI\I\H.
1 0 T 0 T .
Preoransser 1 o 5 e i o o
3333 | | | O
6 294 L3t 59 BEEL AEEREEREREREEE!
1301538153 EEEEEN TT1
130.152.64, 130 g I 15 A e o
130153153194 | [1 []
130157158 01 1 5 1 T L
172.21.212.00 ¢ HH |
192162152168 05 0l
20319212874 | | ! | |
2114248188 5 5 e e o o
217.107.214.246 i | |
= T
[spp_portscan PCRTSCAN DITECTED from 66.239 13€.99 (THREHOLD < comections exceedec ind sg«% B §:
EOEE - St Jin 1R 1827 48 J8T 2003 [a
KRS 30351, @RE: (dl (]
HEF 0.00.00 4]
HEE 000,00 o)
Fehaj 0. 7 SAD:0

Figure 4: SnortView

These tools all show data in different ways, as well as different types of data, and all are useful
for their specific targets. However, the wide variety of tools to display these anomalies, shows that
there are no standard ways to highlight anomalies in a dataset. Furthermore, none of these tools focus

on textual data, nor do they focus on how sequential events may be connected.

2.2 Visualization Terms

In visualization, there are common terms and elements that one can follow to create images that
users will be able to read simply, as such we will define these terms here.

Pre-attentive visual properties: Pre-attentive visual properties [7] are the visual elements that
are immediately noticed, such as coloring an element of a visualization a separate color from the others,

or having a different size. These properties can include the form, color, position, and motion.

Exception emphasis: Visualizations should seek to emphasize exceptions by highlighting, in

one form or another, important data. This can be done by using a separate color for exceptional events

[7].

Gestalt Principles: Gestalt principles are visual characteristics that allow users to either
separate, connect, or highlight data quickly in a visualization. The proximity of visual elements to one

another, and how they are connected together are examples of Gestalt principles[7].

2.3 Data Sources

2.3.1 Honeypots

In the field of computer security one of the methods of detecting threats, whether they be new or
old is the use of what is called a Honeypot [8]. Put simply a Honeypot is an application that simulates
the processes of a physical machine so that a potential attacker or malicious user thinks that he or she is
interacting with a real machine. The Honeypot then records the interaction between the malicious user
and the simulated machine. Honeypots are generally broken down into two categories, high interaction

Honeypots and low interaction honeypots.

High interaction Honeypots typically simulate an entire machine, such that it is essentially a
machine placed onto a network or the internet to be attacked. These typically have keyloggers and other
ways to record a user's keystrokes, such that a researcher can see exactly what an attacker was doing.
Since these are typically full machines one can use them to launch further attacks. Setting up a full
network of high interaction honeypots is challenging as each high interaction honeypot is basically a

real machine.

Low interaction honeypots do not simulate full machines, but rather vulnerabilities or specific

components. Due to this, a low interaction honeypot will fail when an attacker wishes to compromise

the machine, it will just have vulnerabilities that are exploited. However, one may through up a
simulated network of thousands of machines using low interaction honeypots as they simply

masquerade as services.

Data from high interaction honeypots present a much different challenge from the data gathered
from low interaction counterparts, due to the types of data that one collects. With a low interaction
honeypot, it is fairly trivial to collect and normalize the data to create visualizations. Most low
interaction honeypots simply keep track of packets, numeric data that is fairly trivial to categorize.

We used data collected from Sebek, a kernel module for honeypots, which stores data from the
command line. Along with the command line output, it also gathers the date, host, User ID, Process

ID, File Descriptor, Inode number, and the communication port.

2.3.2 PCAP Files

PCAP files are network traffic data, recorded from every packet that travels on a network. In
this project, we focus specifically on the comma-separated value format exported from Wireshark by
default. Wireshark is a network packet analysis tool, that can read live network packets, or recorded
PCAP data files. In this format, there are six fields: Packet number, Timestamp, Source IP address,
Destination IP address, network protocol, and an Information field.

Separating a PCAP CSV is trivial, especially compared to working with High Interaction
Honeypot data. There are several libraries in a variety of languages to parse CSVs, and we use the

default Python CSV library to separate the fields.

2.3.3 KDDCup 1999 Data

In the intrusion detection field, the data for the KDDCup 1999 [6] competition is typically used

as a standard set to test new tools on. Despite the age of this dataset, it was used in a brief test to

determine how useful this visualizer could be to test the output or data matching of algorithms, partly to

show another possible use of this visualizer.

The KDDCup 1999 Data is generally used for anomaly-based intrusion detection systems, and
as such is a combination of both dangerous packets along with normal traffic. Each packet is recorded
as a comma-separated list of roughly 25 features. There are data files involved, but the only files of

interest in regards to this project is unlabeled and labeled test data files.

Sebek
[2009-05-12 08:39:05 Host:192.168.13.4 UID:0 PID:4108 FD:3 INO:13021 COM:sshd J#SSH-2.0-OpenSSH_4.3
PCAP CSV
"1","0.000000","10.42.42.253","10.42.42.50","TCP","46104 > http [SYN] Seq=0 Win=5840 Len=0 MSS=1460

TSV=3299940 TSER=0 WS=6"
KDD-Cup 1999
0,udp,private,SF,105,147,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.01,0.00,0

.00,0.00,0.00,0.00

3. Original Design

The original design for the parser was a Python script that would format the data into a certain
format, so that a C++ program could read this format, and extract the relevant pieces of data to compare
with user-defined keywords. A window would contain every string of data that the parser had read, so
that a user could scroll through them to determine what keywords they wished to look for, organized
through a GUI. However, this proved impractical, as it was just as simple for a user to look at the raw
text file themselves, as the GUI did not offer any compelling advantage.

The original design for the visualizer was something of a particle engine. Each particle would

represent an event, and depending on the timestamp, would flow from a center point, moving either
toward the top, bottom, left, or right part of the screen. The most recent events would be toward the
center of the screen, while the older events would be toward the edges, and all of this would be
animated. Animation, however, was rejected in the final build because it requires the researcher to pay
constant attention to the visualization. Furthermore, without some sort of tracing system (tails tracing
out the point's path, for example), it is difficult to see exactly how an event changes from one timestep

to the next.

4. Experimental Design

4.1 The Parser

The visualizer is divided into two parts, called the Parser, and the Visualizer. Due to the
original purpose of the visualizer, to examine data from the Sebek Honeypot, the focus of the parser is
on textual data. This presents its own challenges that one may not encounter in numeric data. A string
of text may be related to another string, despite having unrelated characters. A naive algorithm might
simply try to match an entire line of text with a keyword or a keyphrase. For example, a simple
matching algorithm may not take a command's flags into consideration. If we use the Is command as
an example, an algorithm must take into account that Is -a and Is -1 are the same command but have
different flags. It may be important that the flags are different, or it might not be, and this is a
challenge that appears with textual data, but not with numeric.

The parser itself is a simple script that reads in data and outputs it into into a list of Event
objects. These objects are specified to have three variables: a timestamp, a source, and the event string.
The timestamp is simply the number attached to the ordering of the events in a user's data, while the

source is where the data originated from. Both of these can be any kind of data. The timestamp, for

example, can be the time the event happened, to the packet number, while the source can be a source IP
or the specific machine name. The event string is left up to the user, but it is what the matching
implementation seeks to match a group with.

The matching implementation allows users to define a grouping of keywords. Since command
line data is very much non-standardized, allowing user-defined keywords, and more importantly user-
defined groupings is important. Many tools and commands in the security field are easily grouped
together, nessus and nmap for example, are used for network reconnaissance and security vulnerability
assessment, and a user might want to group these tools together, to see if they are found in the
command line data. This approach also allows users to place future tools or commands into a group,
without having to contact the developer.

User-defined groupings are implemented through a Group object. To interact with the
visualization, a Group must have a list of the keywords to match in the Event string, the color to display,
if a keyword matches the Event string, and a height for the point to appear if, again, a keyword matches
the Event string. A Group object reads from a grouping file, that the user creates, which is a file
consisting of a list of two line entries. Each entry contains the color, in RGB format, and the height on
the first line, followed by the character separated keywords. For a more thorough explanation, pleease
see Appendix A: Visualizer Use, Section Grouping Files.

The matching implementation was written in Python, specifically to interact with the parsing
portion, as well as allowing the user to include regular expressions in their grouping file, without the
user having to install another library on top of the other libraries they have to install to use the
visualizer. Allowing this also allows the user to pack a variety of data into their Event string in the

parsing portion, and to use regular expressions to match multiple variables in an Event string.

4.2 The Visualizer

The final version of the visualizer was written in Python, specifically so that it could interface with the
parser in a much easier fashion. Therefore it would be less work for a user to write a parser for their
own data source, and have it interact with the visualizer without dealing with a complicated
intermediary file between a parsing script, of any language, and the C++ visualizer. This approach
allows the flexible matching implementation to interface with the visualizer.

One requirement for the visualizer was that it would be cross-platform, easily run, and provide a
visualization of adequate speed. To accomplish this, OpenGL was decided upon, yet Python has no
native OpenGL support. Therefore, a library called Pyglet [9], which is a Python wrapper around
OpenGL, with user interface functions included, was used.

Due to prior research, such as the Lifelines approach, the visualizer uses two different
visualization styles to display the data from the parser. Lifelines used a technique that separates events
by both color and height. Both styles have multiple elements in common. First, both styles display
roughly 45 events, with events proceeding along the x-axis, which represents event number, moving
from earlier events to later events as the points move to the right. Second, sources are displayed along
the y-axis, moving upward in both visualizations. Thirdly, to accommodate the potential different sizes
of each data source in a visualization, every tenth point is larger to show how the user is stepping
through a set of data, and when the data stops.

The visualizer is broken into three windows, one displaying the key for the data, with the other
two displaying the two separate visualization types. The key windows simply displays a colored point,

followed on the right, by the list of keywords that will show up as that color.

ml'TCP, '!gp']

m['SMB']
['DCERPC

m[' DSSETUP']

m['socks']

['gtp-user']

Figure 5: Example of the data key

The top-left window displays the data solely based on color. Separating events by color helps give this

visualization a pre-attentive property; it is easy to tell which events are different.

- coor __________ LX]

192.150.11.111
mnenensEsl semenniseEenEnnnineennenninnnn
98.114.205.102

Figure 6: Color differentiated visualization

The bottom-left window displays the data differentiated by both color and height. Much like the simple
color separated image, this type gives the visualization two pre-attentive properties: the different colors,

and the different height, making exceptions stand out.

Height = |[O] [
A g

2]
R R (LTI o L T PP TEET PP TTT [T S —

08.114.205.102

Figure 7: Color and height differentiated visualization

Both of the windows that display data can be stepped through using the arrow keys, to allow a user to
look through the data at their own speed. Each visualization type also shows off the Gestalt properties,

with the points positioned by source, and events in sequence placed next to one another.

4.3 KDDCup 1999 Data Experiment

Using the KDDCUP 1999 data was an attempt to discern if this visualization could be used for
other purposes than just detecting anomalies. To this end, we tried using a simple matching algorithm
to find a smurf attack in this dataset, and compared it with the labeled test data. A smurf attack is a
kind of denial of service attack, using the ping command. To create the keywords, we wrote a simple
script that would take the KDDCUP 1999 labeled data, and place the list of features, in a string, into the
grouping file. Since we were also going to look through the labeled data, a final group was appended at
the end, with the keyword “smurf”, to show which events were smurf attacks in the corrected data.

The list of events came from two sources. The first was the unlabeled test data, with the source

“kdd_1999_unlabeled”, while the second was the labeled test data, with the source “corrected”. Both
of these datasets have essentially the same data, though the labeled set has an extra field which is the
attack type. These were placed into the list of events so that we could compare our naive algorithm,
with the actual results to see if this visualization could be used to show the effectiveness of an
algorithm.

Our visualizer creates the following image when used with these parameters:

e - _________________________ -/

al'TCP', 'UDP']
u['SMB']
al DCERPC]
[DSSETUP']
['socks']
ml'gtp-user']
98.114.205.102
192.150.11.111 T ————
Height (=B
Eemmm m n N _N_N EEEE
98.114.205.102 Bl
192.150.11.111 WO aTpanp T SENSEEEREEREREEEESE

Figure 8: Full visualization example

5. Experimental Results

5.1 Sebek Results

The data collected from the Sebek honeypot was simply test data, and used for the first round of

tests. While the data itself was simply random keystrokes, this data proved to be a solid demonstration
of the visualizer and the parsing. While there was no data analysis for this dataset, it provided a quick
demonstration of the visualizer and the parser.

For the Sebek dataset we created a parser that specifically combined the year, month, day and
the current time into the timestamp, took the Host IP as its data source, and grabbed all text after the #'

mark, to use as the Event string. We created a grouping file with the following entries:

ping,ssh
0.9,0.1,0.1,0.05
test,nK, exit
.sbin.,PATH
In this example, any events that match “ping” or “ssh” would be displayed as a single random
color and a single random height, “test”,”’nK”, or “exit” would be displayed as a mostly reddish color, at
the height of .05, and “.sbin” or “PATH” matched events would be assigned a single random color and a

single random height.

''''' L o | =8)
ml'ping, 'ssh']

e m|'test, 'nK', ‘exit']
192.168.1.5 m['shin.', 'PATH']
192.168.1.3
192.168.1.6
192.168.1.2
192.168.1.4
192.168.1.1

Height O
192.168.1.5 - -
[[] m
192.168.1.3 Iunnenssnslissesss sx° suEEsE sfissessm =lilsEm
- n L] = [T
192.168.1.6 IS EEEEEEEjEENEENENE NENE EEEEjEEE anjunn
]
192.168.1.2 lIIIIIIlIIlIIIIIIll.llllllll.llllllllll Eumm
]
192.168.1.4 ...l..
192.168.1.1 u n | |
unsss snniEEs EEEEE
" u T n
suEnnss Eussssssssiss = sesiess seeesieEs

Figure 9: Example of Sebek Data Visualization

In the above example, the red points represent event strings with the keywords 'test', 'nK', and
‘exit' in both windows. In the bottom left window, one can see that the red points are elevated at a

certain height as well.

5.2 KDDCup 1999 Data Results

corrected

kddcup_1999 unlabeled

Height ==y

corrected

kddcup_1999_unlabeled

Figure 10: KDD-Cup 1999 Smurf Attack
visualization

By using this visualization to investigate the usefulness of a naive matching algorithm, to find
anomalies with the KDDCup 1999 data, we saw that a naive matching algorithm does not work. This
algorithm, which simply matched every smurf attack example in the test data, missed multiple
occurrences of the Smurf attack. However, we have demonstrated that this visualization could be used
to analyze an anomaly detection algorithm visually.

In the above visualization, the top bar represents the correct KDD-Cup 1999, labeled data, with
each green event being an actual smurf attack. The lower bar is the unlabeled test data, with which we
used our naive algorithm. Each red point is an event that our naive algorithm matched. By comparing

the corrected data, with the unlabeled, one can see how our algorithm missed many of these events.

6. Future Work

This visualizer can be expanded in multiple ways. The more trivial changes would be to the

user interface. Displaying the event number, allowing more points to be shown on screen, as well as
adding mouse support would be changes to increase the usefulness of this visualizer. These
improvements would allow a greater degree of feedback for users, granting them the ability to get a

clearer idea of where they are in a dataset.

Further research could focus on using this visualizer to examine common datasets in the
computer security field. Many of the tests shown in this paper were more of a proof of concept,
showing how exactly the visualizer works and looks, or were demonstrated on problems where other,
non-visualization based methods would work as well. The KDD-Cup 1999 data, for example, can be
examined using mathematical algorithms. Using this visualization to analyze a dataset that has not

been extensively examined by other methods would show the use of this visualization.

Appendix A: Visualizer Use

Installation

The visualizer is developed in Python2.6 using the pyglet library (http://www.pyglet.org/). The pyglet

library uses OpenGL for its graphical capabilities. The source files for the Visualizer are as follows:

* visualizer.py: This is the main function for the Sebek visualizer, and calls the parser function

that one wishes to use.

* draw.py: This holds the drawing functions for all three windows of the visualizer.

* event.py: This holds the class for each Event

* parser.py: This is the parsing function that will read in the data, and convert it into an Event.

* group.py: This holds the class for each Group object

http://www.pyglet.org/

* size.py: This is a simple class that holds the sizes for each point

Once one has all the files, and the libraries installed, one can simply run the visualizer:

$ python visualizer.py

Reading the Visualization

After the visualizer is run three windows will appear, each showing data:

.['TEP','!gP']

m[SME']

['DCERPC
m[' DSSETUP']
m| 'socks']

['etp-user']

Figure 11: Color key for each group
The first window is the key for each user defined group. The colored point preceding the text in
brackets shows what color each user-defined group is represented by. Each word or text surrounded by

a single quote is one keyword to be searched for as a part of that group.

. — 1]

192.150.11.111
Epnpnnnnnlls eenneenjeeeneennnieeeeennnnjjaEEn
08.114.205.102

Figure 12: Figure of the color differentiated graph
This window displays a color differentiated graph: events are differentiated only by color. Unmatched
events appear as black, and the IP addresses of each host, each with a list of data, are displayed on the

left. Finally, a larger point it placed at every tenth interval.

Height — | =] [
A g

192.150.11.111
08.114.205.102

Figure 13: Figure of a height-differentiated graph

In this window the different user-defined groupings are indicated by both color and height. As in the

color-differentiated graph, the IP addresses are on the left, and every tenth point is larger.

Creating a Parser

Creating a parser is as simple as creating a new Python script. To describe this process, it is best to

start by looking at an event object, mainly its initialize function.

def __init__ (self,t,h,e):
self. Timestamp =t
self.Host =h
self.Event=¢
self.Color = [0.0,0.0,0.0]
self. Height = 0.0
self. EventHeight = 0.0

For the actual parser, only the first three data members are important: the Timestamp, the Host,
and the Event. The Timestamp is for ordering, and can be anything, ranging from the actual
timestamp, to packet number. The Host is the source of a piece of data, assumed for most data types to
be a host IP address, but it can be anything. Finally, the Event is the string to match keywords with, it is
what the matching implementation searches through to see if an Event matches a group. The color,

height, and event height are discussed further in this paper.

The initialize function takes only three parameters, the timestamp, the source for a piece of data,
and the event string. To create a parser, one simply needs to create a function that separates their data
into those three components, creates a list of Events, and returns this list. For example, if we have data

source that outputs the following:

'Line Num', 'Source IP', 'Keystrokes'
1, 192.168.13.4, Is
2, 192.168.13.4, cd test_dir

One would write a Python script that would run the following pseudo code:

example_parser.py
def example_parse():

data_source = open('data_file")

event_list =[]

for line in data_source:
data_array = line.split(',")
temp_event = Event(data_array[0], data_array[1], data_array[2])
event_list.append(temp_event)

return event_list

In this example the parser reads in every line from a file, splits each line into an array, using
commas as a delimiter. It then creates a temporary Event, using this array, and appends that temporary

Event to a list of Events.

Changing Parsers

Changing which parser to use with the visualizer is a trivial task. Using the example parser in the

previous section, all one simply needs to do is:
1. Import the parser script into the visualizer

2. Change line 77 of the Visualizer script to call your parser script's parsing function

Change:

#import sebek_parser

to:

#import example_parser

and change line 77:

source_data = sebek_parser.get_data()
to:

source_data = example_parser.example_parse()

Grouping Files

To properly match a group of keywords with an Event, one must first create a Grouping file. To

begin with, it is instructive to examine a Group object:

class Group:
def _ init_ (self,c,k,h):
self.Color =c
self.Keywords = k
self.Height = h

Each Group object has the following data members: Color, which is what color to display if
matched, Keywords is a list of keywords to search an Event object's string for, and the Height is what

height to displace a point if an Event matches a keyword.

Rather than have users hardcode a list of Group objects, the visualizer reads in a simple file

called 'grouping' by default which consists of the following:

red channel, green channel, blue channel, height

keyword 1, keyword 2, keyword 3,..., keyword n
Colors are represented by their RGB value, going from O to 1, and the height should be
constricted from 0.0 to 0.2. Each entry for both color/height and keywords are separated by a comma.
Each keyword is compiled as a regular expression, so no spaces should follow each comma. If no
color/height is specified, that is, four doubles, separated by commas, a random value is assigned for
each color channel and height, for that line. An example grouping file might look like the following:

0.0,0.0,1.0,0.02

Is,lIs.

ps,top

In the above example the regular expressions 'ls' and 'ls." are considered one group, and if they
match an event, the point in the visualizer will be displayed as a blue color, and will be displaced .02
upward from the default height for its source. The group consisting of 'ps' and 'top' will be assigned

essentially a random color, and a random displacement.

Appendix B: Source Code

This code is also available by emailing kpgalloway @ gmail.com

Event.py
class Event:

def __init__ (self,t,h,e):
self. Timestamp =t
self. Host =h
self. Event =¢
self.Color = [0.0,0.0,0.0]
self. Height = 0.0
self.EventHeight = 0.0

def show(self):
print str(self. Timestamp) + ": " + str(self.Host)

def uid(self,u):
self.UID =u

def pid(self,p):
self.PID =p

def fd(self,f):
self. FD = f

def ino(self,i):
self.INO =i

def com(self, ¢):
self.COM =c¢

def get_event(self):
return self.Event

def get_host(self):
return self.Host

def set_color(self,c):

self.Color = ¢

def get_color(self):
return self.Color

def set_height(self,h):
self.Height =h

def get_height(self):
return self.Height

def set_EventHeight(self,eh):
self.EventHeight=eh

def get_EventHeight(self):

return self. EventHeight

def get_r(self):
return self.Color[0]
def get_g(self):
return self.Color[1]
def get_b(self):

return self.Color[2]

Group.py
class Group:
def __init__(self,c,k,h):
self.Color = ¢
self.Keywords = k
self.Height =h
def show(self):
print self.Color
print self.Event
def get_color(self):
return self.Color
def get_keywords(self):
return self. Keywords
def get_height(self):

return self. Height

Size.py
class Sizes:

def __init__ (self):

self.Point_Size = 8.0
self.Space_Size = 1.0
def Change_Point(self,change):
if (self.Point_Size + change) > 0:
self.Point_Size+=change
def Change_Size(self,change):
if (self.Space_Size + change) > 0:
self.Space_Size+= change
def get_Point(self):
return self.Point_Size
def get_Space(self):

return self.Space_Size

Draw.py
#!/usr/bin/python2.6
from pyglet.gl import *

def draw_height(cam_test,matched,mins,maxs,window,p_size,s_size):
lengths = {}
for i in matched:
if mins[i] < O:
mins[i] =0
maxs[i] = 44
if maxs[i] < O:
maxs[i] =44
if mins[i] == maxsl[i]:
mins[i] = maxs[i] - 1
glLoadldentity()
gluLookAt(cam_test.get_xyz()[0],cam_test.get_xyz()[1],1.0, #camera location
cam_test.get_xyz()[0],cam_test.get_xyz()[1],0.0, #what it's looking at
0.0,1.0,0.0) #point to camera
gIMatrixMode(GL_MODELVIEW)
glColor3d(0.4,0.1,0.8)
glPointSize(p_size)
glLoadldentity()
total = 0.0

#draw list of points

glBegin(GL_POINTS)
for i in matched:
temp_pos =-1.9
for j in range(mins[i],maxs[i]):#matched[i]:
#print str(i) + " ' + str(j)
cam_x = cam_test.get_xyz()[0]
if G+1)%10 == 0:
glColor3d(matched[i][j].get_r(),matched[i][j].get_g(),matched[i][j].get_b())

glVertex3d(temp_pos/(float(window.width)/float(window.height)),matched[i][j].get_height()
+0.01+matched[i][j].get_EventHeight(),1.0)

glVertex3d(temp_pos/(float(window.width)/float(window.height)),matched[i][j].get_height()-
0.01+matched[i][j].get_EventHeight(),1.0)

if j >= len(matched[i]):
j = len(matched[i])-1

glColor3d(matched[i][j].get_r(),matched[i][j].get_g(),matched[i][j].get_b())
x_coord = temp_pos/(float(window.width)/float(window.height))
glVertex3d(x_coord,matched[i][j].get_height()+matched[i][j].get_EventHeight(),1.0)
temp_pos+=0.030 * (float(window.width)/float(window.height))* s_size

glEnd()

glMatrixMode(GL_PROJECTION)

def draw_bars(cam_test,matched,mins,maxs,window,p_size,s_size):
lengths = {}
for i in matched:
if mins[i] >= len(matched[i]):
mins[i] = len(matched[i])-1
maxs[i] = mins[i]+1
if maxs[i] >= len(matched[i]):
maxs[i] = len(matched[i])-1
mins[i] = maxs[i]-44
if mins[i] < O:
mins[i] =0
glLoadldentity()
gluLookAt(cam_test.get_xyz()[0],cam_test.get_xyz()[1],1.0, #camera location
cam_test.get_xyz()[0],cam_test.get_xyz()[1],0.0, #what it's looking at
0.0,1.0,0.0) #point to camera
gIMatrixMode(GL_MODELVIEW)
glColor3d(0.4,0.1,0.8)

glPointSize(p_size)
glLoadldentity()
total = {}
#draw set of points
glBegin(GL_POINTS)
for i in matched:
temp_pos =-1.9
for j in range(mins[i],maxs[i]):
cam_x = cam_test.get_xyz()[0]
if G+1)%10 == 0:
glColor3d(matched[i][j].get_r(),matched[i][j].get_g(),matched[i][j].get_b())

glVertex3d(temp_pos/(float(window.width)/float(window.height)),matched[i][j].get_height()
+0.01,1.0)

glVertex3d(temp_pos/(float(window.width)/float(window.height)),matched[i][j].get_height()-
0.01,1.0)

glColor3d(matched[i][j].get_r(),matched[i][j].get_g(),matched[i][j].get_b())
glVertex3d(temp_pos/(float(window.width)/float(window.height)),matched[i][j].get_height(),1.0)
temp_pos+=0.030 * (float(window.width)/float(window.height)) * s_size

glEnd()

glMatrixMode(GL_PROJECTION)

Visualizer.py
#!/usr/bin/python2.6
import array

import random

import event

from group import Group
from size import Sizes
import get_timestamp
import parse_pcap_csv
import kdd_parse

import draw

import re

from pyglet.gl import *
from pyglet.window import key
from pyglet import font
from pyglet import image

import ctypes

"Format for group file:
r,g,b,a:each goes from 0.0-1.0, if blank will randomly assign color

c,d,e,f : each comma can be a user-specified separator

max_dot = 10

min_dot =0

point_size = 8.0

space_size = 1.0

size = Sizes()

#This is to get the groups

group_file = open('grouping.bak’)

groups = group_file.readlines()

group_list =[]

matched = {}

ip_heights = {}

#separate each group of colors and keywords

for i in range(0,len(groups),2):

color_str = groupsl[i].strip(\n').split(',") #get the color of each one

if len(color_str) < 4 or len(color_str) > 4:

color = [random.random(),random.random(),random.random()]

temp_height = random.randrange(99) * 0.001

else:

color = [float(color_str[0]),float(color_str[1]),float(color_str[2])]

temp_height = float(color_str[3])

events = groups[i+1].strip(\n").split(’,") #separate each event to write to file

temp = Group(color,events,temp_height)
group_list.append(temp)
#This is for matching groups with events
source_data = get_timestamp.get_year()
current_height = 0.0
#Match events and compile REs
total=0
group_color = {}
group_height = {}

test_re =[]

for i in group_list:
for j in i.get_keywords():
temp = re.compile(j)
test_re.append(temp)
group_color(j] = i.get_color()

group_height[j] = i.get_height()

for i in source_data:
if i.get_host() not in ip_heights:
ip_heights[i.get_host()] = current_height
current_height+=0.2
if i.get_host() not in matched:
matched[i.get_host()] =[]

#set heights and colors
#match keywords with event data
for i in source_data:
i.set_height(ip_heights[i.get_host()])
for j in test_re:
temp_result = j.search(i.get_event())
if temp_result is not None:
i.set_color(group_color[j.pattern])
i.set_EventHeight(group_height[j.pattern])
matched[i.get_host()].append(i)

ip_labels =[]
gl x=-0.5
#create the source labels
for i in ip_heights:
temp_x = ((gl_x+1)/2)*600
temp_label = pyglet.text.Label(i, font_name="Times New Roman',color=(15,15,15,255),
font_size=12,x=-0.5,
y=((ip_heights[i]+1)/2)*300,
anchor_x='left', anchor_y="bottom')

ip_labels.append(temp_label)

group_labels =[]

gl x=-0.9
el y=09
for i in group_list:
temp_x = ((gl_x+1.02)/2)*600
temp_y = ((gl_y+0.96)/2)*350
temp_label = pyglet.text.Label(str(i.get_keywords()),font_name="Times New Roman’,
color=(15,15,15,255),
font_size = 12,x=temp_x,y=temp_y,
anchor_x='left',anchor_y='bottom")
group_labels.append(temp_label)
gl_y-=0.1

class Camera:

def __init__(self):
self.xyz = [-0.6,0.0,1.0]
self.max_dot = 45
self.min_dot =0

def move_x(self,offset,dot):
#self.xyz[0]+=offset
self.min_dot+=dot
self.max_dot+=dot

def move_y(self,offset):
self.xyz[1]+=offset

def move_z(self,offset):
self.xyz[2]+=offset

def get_xyz(self):
return self.xyz

def set_max(self,max):
self.max_dot = max

def get_max_dot(self):
return self.max_dot

def set_min(self,min):
self.min_dot = min

def get_min_dot(self):

return self.min_dot

global mins

mins = { }
global maxs
maxs = {}
for i in matched:
print 'Global: ' + str(i)
mins[i] =0
maxs[i] = 44
#pyglet input
window = pyglet.window.Window(600,350,resizable=True)
window.set_caption('Color")
window?2 = pyglet.window.Window(600,350,resizable=True)
window?2.set_caption('Height')
window3 = pyglet.window.Window(600,350,resizable=True)
window3.set_caption('Key')
label = pyglet.text.Label('TESTING', font_name='Times New Roman',
font_size=56, x=2,
y=2
)
keymap = key.KeyStateHandler()
window.push_handlers(keymap)
window?2.push_handlers(keymap)
window3.push_handlers(keymap)
label_test = pyglet.text.Label()
cam_test = Camera()
#OpenGL tests
#OpenGL initialize
glClearColor(0.8,0.8,0.8,0.0)

#draw the color differentiated window
def on_draw():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
#camera test
glMatrixMode(GL_PROJECTION)
glPushMatrix()
draw.draw_bars(cam_test,matched,mins,maxs,window,size.get_Point(),size.get_Space())
glPopMatrix()
glMatrixMode(GL_PROJECTION)

for i in ip_labels:
i.draw()

#glPopMatrix()

#draw the height differentiated window

def on_draw2():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glMatrixMode(GL_PROJECTION)
glPushMatrix()
draw.draw_height(cam_test,matched,mins,maxs,window,size.get_Point(),size.get_Space())
glPopMatrix()
for i in ip_labels:

i.draw()

#draw the key
def text_window():
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glMatrixMode(GL_PROJECTION)
glPushMatrix()
glLoadldentity()
temp = 0.9
glPointSize(8.0)
for i in group_list:
if temp < window.height and temp > 0:
glBegin(GL_POINTS)
glColor3d(i.get_color()[0],i.get_color()[1],i.get_color()[2])
glVertex3d(-.9,temp,0.0)
glEnd()
temp-=0.1
glPopMatrix()
for i in group_labels:

1.draw()

def on_key_press(symbol,modifiers):
if symbol == key.Q:

exit()

def update(dt):
if keymap|[pyglet.window.key. RIGHT]:
for i in mins:
mins[i]+=1
maxs[i]+=1
cam_test.move_x(0.00,1)
if keymap|[pyglet.window.key. LEFT]:
for i in mins:
mins[i]-=1
maxs[i]-=1
cam_test.move_x(-0.00,-1)
if keymap|[pyglet.window.key.UP]:
cam_test.move_y(0.03)
if keymap|[pyglet.window.key. DOWN]:
cam_test.move_y(-0.03)
if keymap|[pyglet.window.key. W]:
size.Change_Point(1.0)
if keymap|[pyglet.window .key.S]:
size.Change_Point(-1.0)
if keymap[pyglet.window.key.A]:
size.Change_Size(-0.1)
if keymap[pyglet.window.key.D]:
size.Change_Size(0.1)

window.on_draw = on_draw
window.on_key_press = on_key_press
window.switch_to()
glClearColor(0.8,0.8,0.8,0.0)
window?2.on_draw = on_draw?2
window?2.on_key_press = on_key_press
window2.switch_to()
window.set_location(0,0)

window?2.set_location(0,500)

glClearColor(0.8,0.8,0.8,0.0)

window3.on_draw = text_window

window3.on_key_press = on_key_press

window3.set_location(600,0)

window3.switch_to()

pyglet.clock.schedule_interval(update,1.0/60.0)

pyglet.app.run()

References

1.

Bade, R., Schlechtweg, S., and Miksch, S. 2004. Connecting time-oriented data and information
to a coherent interactive visualization. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04. ACM, New
York, NY, 105-112. DOI= http://doi.acm.org/10.1145/985692.985706

Kayacik, H. G. and Zincir-Heywood, A. N. 2006. Using self-organizing maps to build an attack
map for forensic analysis. In Proceedings of the 2006 international Conference on Privacy,
Security and Trust: Bridge the Gap between PST Technologies and Business Services
(Markham, Ontario, Canada, October 30 - November 01, 2006). PST '06, vol. 380. ACM, New
York, NY, 1-8. DOI= http://doi.acm.org/10.1145/1501434.1501474

Shabtai, A., Klimov, D., Shahar, Y., and Elovici, Y. 2006. An intelligent, interactive tool for
exploration and visualization of time-oriented security data. In Proceedings of the 3rd
international Workshop on Visualization For Computer Security (Alexandria, Virginia, USA,
November 03 - 03, 2006). VizSEC '06. ACM, New York, NY, 15-22. DOI=
http://doi.acm.org/10.1145/1179576.1179580

Viégas, F. B., Golder, S., and Donath, J. 2006. Visualizing email content: portraying
relationships from conversational histories. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Montréal, Québec, Canada, April 22 - 27, 2006). R.
Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and G. Olson, Eds. CHI '06. ACM, New
York, NY, 979-988. DOI= http://doi.acm.org/10.1145/1124772.1124919

Koike, H. and Ohno, K. 2004. SnortView: visualization system of snort logs. In Proceedings of
the 2004 ACM Workshop on Visualization and Data Mining For Computer Security
(Washington DC, USA, October 29 - 29, 2004). VizZSEC/DMSEC '04. ACM, New York, NY,
143-147. DOI= http://doi.acm.org/10.1145/1029208.1029232

KDD-Cup 1999 Dataset{online}
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Marty, R, Applied Security Visualization, Addison-Wesley, 2008

Spitzner, L, Honeypots—Tracking Hackers, Addison-Wesley, 2002

9. Pyglet Python Library{online} http://www.pyglet.org

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Anomaly-Based, Intrusion Detection Visualizations
	Abstract
	Acknowledgements
	1. Introduction
	1.1 Visualization Introduction
	1.2 Problem Statement
	1.2.1 Sequential Order of Events
	1.2.2 Textual Data

	1.3 Project Scope

	2. Background
	2.1 Related Work
	2.2 Visualization Terms
	2.3 Data Sources
	2.3.1 Honeypots
	2.3.2 PCAP Files
	2.3.3 KDDCup 1999 Data

	3. Original Design
	4. Experimental Design
	4.1 The Parser
	4.2 The Visualizer
	4.3 KDDCup 1999 Data Experiment

	5. Experimental Results
	5.1 Sebek Results
	5.2 KDDCup 1999 Data Results

	6. Future Work
	Appendix A: Visualizer Use
	Installation
	Reading the Visualization
	Creating a Parser
	Changing Parsers
	Grouping Files

	Appendix B: Source Code
	Event.py
	Group.py
	Size.py
	Draw.py
	Visualizer.py

	References

