
 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

Mutualistic Software
Services (MSS) for

Large-Scale Networks
A Project

By John P. Quan

Presented to the faculty of University of Alaska Fairbanks

In Partial Fulfillment of the Requirements of

MASTERS IN SOFTWARE ENGINEERING

Fairbanks, Alaska
April 2012

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ ii ~

Mutualistic Software

Services (MSS) for

Large-Scale Networks
A Project

By John P. Quan

RECOMMENDED:

 Advisory Committee Chair Date

 Advisory Committee Member Date

 Advisory Committee Member Date

APPROVED:

 Dept. Head, Computer Science Department Date

 Dean, College of Science, Engineering and Mathematics Date

 Dean of the Graduate School Date

 Date

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ iii ~

Abstract
Think of a large-scale network (LSN) as a geographically separated collection of servers, or server
clusters, interconnected by the Internet to achieve some common purpose, such as communication,
computation, or experimentation. Several experimental LSNs have taken root across the globe, which
span international boundaries through joint collaboration to develop a secure, robust global Internet.
For instance, the Future Internet Research and Experimentation (FIRE) program aims to boost European
innovation and its competitive role in defining future Internet concepts. It creates an open research
environment, which gives researchers the opportunity to conduct large-scale experiments. FIRE will
eventually incorporate users at all levels. It has identified two key challenges: security and federation
(which includes governance, sustenance, and incentives). Similarly, Japan’s Generation Network 2plus
(JGN2plus) is an overlay and service platform for network control and measurement, designed to
encourage advanced applications and international collaboration. It aims to foster research
partnerships with industry, academia, government, and regional organizations. Within the US, the
Global Environment for Network Innovation (GENI) project is the largest effort in this area.1 GENI has
four control frameworks: ProtoGENI, PlanetLab, ORBIT, and the Open Resource Control Architecture
(ORCA).2 This project centers on creating MSS Version 1.0 on the ORCA control framework (CF) as the
first step in the following successive goals.

My first goal was to create a means by which the GENI ORCA CF users, such as developers,
experimenters, and researchers, can share and track software services for use within ORCA. As a proof
of concept, MSS Version 1.0 focuses on the “middle-mile” and “last-mile” of service delivery. My second
goal is to create an infrastructure on which all GENI CFs can share services in exchange for resources.
After successfully applying MSS to GENI, my ultimate goal is to expand this concept so that other LSNs
may take advantage of the mutualistic model by offering valuable services, with computer security as
the flagship service, in exchange for resources.

The concept of sharing services in exchange for resources is hardly new. For example, Amazon and the
Apple App Store have a centralized delivery system in which customers exchange resources (money) for
services (applications and products). In addition, peer-to-peer networks such as LimeWire and Kazaa
use a decentralized delivery system in which members exchange resources (videos and music) for
resources (other videos and music). MSS is different from both of these systems in several ways.

First, the planned architecture for MSS uses a hierarchical tree-like distribution, which flows centrally
from the root at the GENI Maintenance Operations Center (GMOC), then branches through each CF
origin to its affiliates, and finally flows to the users as leaves. The second difference relates to the first in
the middle-mile and last-mile of service delivery. In the middle-mile, each node in the tree is a client of
its parent server, and so a server is a client of a server, is a client of a server, and so on. This means that
each server must authenticate with the originating CF, and each user must authenticate with his or her
parent CF in order to receive services. In the last-mile, the required number of servers at each node
decreases like the diameter of a tree branch from many servers at the origin to a CF residing on a single
server (e.g., laptop and desktop computers) that a single individual can donate. This single server model
upon which all ORCA and MSS systems must reside did not exist before this project. Finally yet
importantly, GENI experimenters “pay” for GENI by hosting a CF and sharing resources in the form of

1
 Quan, J., Nance, K., & Hay, B. (May/June 2011). A Mutualistic Security Service Model: Supporting Large-Scale

Virtualized Environments. IT Professional (IEEE), 18-23
2
 BBN Technologies. (March 30, 2012). GENI Spiral 4. GENI. Retrieved on April 7, 2012, from:

http://groups.geni.net/geni/wiki/SpiralFour

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ iv ~

virtual machines, which means GENI’s basic unit of currency is the resource. If one considers the
software products of these experiments to be services, then offering services to the public in exchange
for donated resources provides the payment GENI requires to grow.

This first version of MSS incorporates a lightweight Linux, Apache, MySQL, and PHP (LAMP)

infrastructure that ORCA owners can use to advertise and deliver services. In doing so, it addresses the

fundamental, mutual need between owners and users: owners require vast amounts of resources to

meet their goal of conducting at-scale Internet experiments, and users, experimenters, and researches

require software services to conduct experiments and business. MSS leverages the hierarchical GENI

structure to establish a distributed service delivery system. When a business or university donates a

portion of its resources to GENI as an affiliate, it receives all or part of its sponsor’s services, which

organizational members can then access.

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ v ~

Acknowledgements
I thank Dr. Brian Hay, Department of Computer Science, University of Alaska Fairbanks, Dr. Kara Nance,

Department of Computer Science, University of Alaska Fairbanks, Dr. Jon Genetti, Chair of the

Department of Computer Science, University of Alaska Fairbanks, and Dr. Peter Knoke, Department of

Computer Science, University of Alaska Fairbanks for their guidance, technical knowledge, and support.

Most importantly, I thank my wife Megan for her love and support, without which I could not have

completed any of this.

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ vi ~

Project Conventions
This project consists of the following volumes, in which each page has a header that reflects the volume,

and which are numbered and designed to be self-contained documents:

I. Software Requirements Specification for Mutualistic Software Services (MSS)

II. Software Architecture for Mutualistic Software Services (MSS)

III. Software Design for Mutualistic Software Services (MSS)

IV. Software Testing for Mutualistic Software Services (MSS)

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ vii ~

Table of Contents
Abstract .. iii

Acknowledgements ... v

Project Conventions ... vi

Table of Contents .. vii

Challenges ... xiv

Summary and Conclusions .. xvi

Volume I .. 1

Software Requirements Specification for Mutualistic Software Services (MSS) .. 2

1. Introduction .. 3

1.1 MSS Envisioned ... 3

1.2 MSS at Present .. 4

1.1 Purpose ... 5

1.2 Document Conventions .. 5

1.3 Intended Audience and Reading Suggestions ... 5

1.4 Project Scope and Product Features ... 6

2. Overall Description.. 7

2.1 Product Perspective .. 7

2.2 User Classes and Characteristics ... 8

2.3 Operating Environment .. 9

2.4 Design and Implementation Constraints .. 11

2.5 User Documentation ... 11

2.6 Assumptions and Dependencies ... 12

3. System Features .. 13

4. Functional Requirements .. 17

5. External Interface Requirements .. 18

5.1 User Interfaces .. 18

5.2 Hardware Interfaces ... 18

5.3 Software Interfaces ... 20

5.4 Communications Interfaces .. 21

6. Other Nonfunctional Requirements ... 23

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ viii ~

6.1 Performance Requirements .. 23

6.2 Safety Requirements ... 23

6.3 Security Requirements .. 24

6.4 Quality Attributes .. 24

7. Other Requirements ... 26

8. References .. 27

Appendix A .. 29

Data Dictionary ... 29

Volume II ... 32

Software Architecture for Mutualistic Software Services (MSS) .. 33

1. Introduction .. 34

1.1 Document Introduction .. 34

1.2 Business Decisions .. 34

1.3 System Purpose and Scope ... 35

1.4 Definitions, Acronyms, and Abbreviations.. 35

1.5 System Overview... 35

2. Decomposing the SRS ... 37

2.1 System Description ... 37

2.2 Functional Attributes .. 37

2.3 Non-functional Attributes ... 37

2.4 System Constraints ... 37

2.4.1 Hardware Constraints .. 37

2.4.2 Software Constraints .. 39

2.5 User Characteristics .. 40

2.5.1 User Classes and Characteristics .. 40

2.5.2 User Groups and Attributes ... 40

2.6 Assumptions and Dependencies ... 41

2.7 Stakeholders ... 41

3. System Capabilities, Conditions, and Constraints ... 44

3.1 Capabilities .. 44

3.2 Conditions ... 47

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ ix ~

3.3 Constraints .. 52

4. System Characteristics .. 55

4.1 Autonomy ... 55

4.2 Integrability ... 55

4.3 Extensibility ... 55

4.4 Portability .. 55

4.5 Usability .. 55

4.6 Securability .. 56

4.7 Credibility .. 56

4.8 Interoperability ... 56

5. Architectural Plan .. 57

5.1 Remote Server Model ... 58

5.2 Context Diagrams and Data Model ... 59

5.2.1 MSS-CENTER... 59

5.2.2 MSS-ORIGIN ... 59

5.2.3 MSS-AFFILIATE ... 59

5.2.4 MSS-RESOURCE .. 59

5.2.5 MSS-USER ... 59

5.2.5 MSS-DEVELOPER .. 59

5.3 Component Model .. 60

5.3.1 Databases ... 60

5.3.2 Components ... 60

5.3.3 Service Repository .. 61

6. Architecture Trade-off Analysis Method (ATAM) ... 62

6.1 Purpose ... 62

6.2 Main Architectural Drivers .. 62

6.3 Business Goals ... 62

6.4 Major Stakeholders ... 62

6.5 Architectural Approaches ... 63

6.6 Utility Tree... 63

7. Cost Benefit Analysis Method (CBAM) .. 69

7.1 Utility Response Curves .. 69

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ x ~

7.1.1 Autonomy vs. Service Delivery ... 69

7.1.2 Integrability vs. User Interface Compatibility .. 70

7.1.3 Credibility vs. CF Fraud ... 70

7.1.4 Extensibility vs. Tree Balancing .. 71

7.1.5 Integrability vs. CF Versions ... 72

7.1.6 Securability vs. Service Fraud ... 72

7.1.7 Portability vs. OS Change ... 73

7.1.8 Portability vs. CF Change .. 74

7.1.9 Autonomy vs. MSS-ENTITY Rules ... 75

7.1.10 Securability vs. Donation Fraud ... 75

7.2 Architectural Strategies .. 76

8. References .. 77

Appendix A .. 78

Data Dictionary ... 78

Appendix B .. 80

Context Diagrams .. 80

System Overview .. 82

Component Models .. 83

Remote Server Model ... 84

Appendix C .. 85

GENI News and Events (2011)... 85

Volume III ... 86

Software Design for Mutualistic Software Services (MSS) ... 87

1. Introduction .. 88

2. Document Outline ... 89

3. System Overview ... 90

3.1 Functional Attributes .. 90

3.2 Non-functional Attributes ... 90

3.3 Components .. 90

4. System Architecture .. 91

4.1 Databases .. 91

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xi ~

4.1.1 Services Data .. 91

4.1.2 CF Data ... 91

4.1.3 Users Data .. 91

4.2 Components .. 92

4.2.1 CF Interface .. 92

4.2.2 User Interface... 92

4.2.3 Service Interface .. 93

4.3 Service Repository ... 94

4.3.1 File System ... 94

4.4 Remote Server .. 94

5. Detailed System Design... 97

6. References .. 103

Appendix A .. 104

Services Database ... 104

Overview ... 104

SQL Code ... 104

Users Database ... 107

Overview ... 107

SQL Code ... 107

Appendix B .. 110

High-Level System Design ... 110

PHP Code ... 111

add_client.php .. 111

add_sponsor.php .. 116

add_user.php .. 121

assign_users.php ... 125

choose_category ... 128

choose_service.php .. 135

connect_orca.php ... 137

connect_Services.php ... 138

connect_Users.php ... 138

constants.php.. 139

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xii ~

cookie.php ... 140

del_actors.php .. 141

del_services.php ... 144

del_users.php .. 149

download_service.php .. 152

footer.php ... 154

functions_php.php .. 155

functions_services.php ... 156

functions_shell.php ... 162

functions_User.php ... 167

header.php .. 177

index.php .. 177

list_actors.php... 188

list_services.php .. 190

list_sponsor ... 192

list_users.php .. 194

menu.php .. 197

style.css ... 198

user_logout.php .. 200

BASH Scripts .. 201

sh_check_heartbeats .. 201

sh_rsync_command .. 201

sh_ssh_command ... 201

Appendix C .. 202

Hypervisor ... 202

Networking .. 202

Xen .. 202

ORCA ... 204

Initialization Scripts ... 204

Virtual Router .. 205

ORCA ... 205

Networking .. 210

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xiii ~

Initialization scripts ... 210

Volume IV ... 212

Software Testing for Mutualistic Software Services (MSS) ... 213

1. Introduction .. 214

2. Test Criteria ... 214

3. Tested Components .. 215

3.1 Databases .. 215

3.2 Components .. 215

3.3 Service Repository ... 230

4. Evaluation ... 234

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xiv ~

Challenges
Mutualistic Software Services began in my mind’s eye as a simple solution to two seemingly disparate

problems. After reading about a series of computer attacks on the United States in the first decade of

the 21st century, I began to wonder how one might curb such incidents when it seems that many

Americans are oblivious to the risks of surfing the Internet. During this time, I worked as a GENI

research assistant at the University of Alaska Fairbanks (UAF) developing federation incentives to

increase GENI membership. This is when the idea of offering a security service in exchange for

computer resource donations from the public occurred to me. After realizing that no use case exists for

this arrangement, I set about devising such an infrastructure. My abstract portrays my goals for this

project as beginning with a small scope, which progressively grows until finally LSNs offer computer

security, among other services, in exchange for resources. In reality, I pictured the “grand vision” first,

and then shrunk the scope in steps until I finally developed a plausible beginning for MSS.

This project presented several challenges throughout its course. Some of these hurdles included:

 creating a CF cluster that resides on a single server

 developing a hierarchical service delivery system in which the client has no access to the

sponsor’s file system and the end users only have the Secure Shell (SSH) port 22 open

 pushing database updates to client sponsors

 incorporating heartbeats into Version 1.0 with no CF support

 applying a recursive attribute tree that describes the services to the file system directory.

The single greatest challenge was developing the single-server CF cluster. A canonical ORCA installation

resides on at least two, but typically several computers, and condensing all of the hardware onto one

computer took me several months to accomplish. Fortunately, I was able to apply this to one of the UAF

GENI goals, which is to set up a GENI CF at remote locations across Alaska. Currently, Barrow, Alaska

hosts the first “remote server,” on which a working ORCA installation and MSS Version 1.0 harmoniously

coexist on one computer. The remote server works by virtualizing the router ORCA prescribes for

Network Address Translation (NAT), and I thank Dr. Brian Hay for applying his networking expertise to

modify the ORCA method of NAT in a way better suited for a single-server application.

The second difficulty was to develop a hierarchical service delivery system. In MSS, the sponsor controls

service delivery by using a proxy on each client. This is a user specifically designated to push MSS

services using remote synchronization (Rsync) with SSH, and the proxy serves two purposes. Primarily,

sponsors will deliver new services upon a client administrator’s request if the client computer is

donating resources to GENI. Secondarily, this allows sponsors to apply updates to downloaded services

without the client having to initiate the action, which later may provide an avenue for a security service

to keep the client computer’s virus definitions up to date. One might infer that sponsors also can delete

services from unruly client sponsors, but this is not the intent of MSS. Once a client downloads a

service, it belongs to the client. Fortunately, I also was able to use remote SSH commands to solve the

third challenge of pushing database updates to the client sponsors. MSS uses the same user proxy to

send MySQL statements remotely by allowing the user proxy to access the ORCA, Users, and Services

databases.

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xv ~

The fourth barrier I faced was incorporating heartbeats, which are packets of information sent from

participating ORCA clusters to the ORCA Remote Actor Registry, and that contain identifying information

flagging the resources as available to GENI experimenters. Since I do not have access to the ORCA Actor

Registry database, I had to develop an alternative means by which I use the Registry’s Hypertext

Transfer Protocol (HTTP) source code to determine whether an ORCA actor is currently donating

resources.

Lastly, I required an intuitive service storage system on the sponsor and client computers so that end-

users easily can find their services and that would not add overhead to MSS. My first inclination was to

use MySQL Binary Large Object (BLOB) storage and deliver the service to the user with the Secure File

Transfer Protocol, but this would have added maintenance and upkeep in the Services database when a

perfectly good file system already exists on the computer. However, the file system still requires a

method to translate the attributes of the services to the file location on the computer. Coincidentally,

my friend and former co-worker Donald Kline and I wrote a paper about his brainchild, the Attribute

Description Service for Large-Scale Networks (2011) to address this problem and others.3

I did not use our Attribute Description Service in Version 1.0 because the project scope would have been

too great, but I did include it in the architecture for MSS Version 2.0. The main idea I applied to MSS

Version 1.0 is if one can describe a service according to its attributes, one can describe a service location

according to its attributes. For example, consider a ficticious new program named the Simple Border

Gateway Protocol (sBGP) to be a networking protocol service within the GENI framework that one may

download as the archived file sBGP.zip. One might consider the attribute tree for sBGP like so: MSS has

attributes, of which one is Software…has attributes, of which one is Services…has attributes, of which

one is Network…has attributes, of which one is Protocol…has attributes, of which one is the service

sBGP. Therefore, MSS stores the uniquely named file sBGP.zip in the same place on all computers: [MSS

root location]/MSS/Software/Services/Network/Protocol/sBGP.zip. One need only apply the attributes

one used to find the service sBGP to retrieve the full directory path to the file.

3
 Kline, D., & Quan, J. (2011). Attribute Description Service for Large-Scale Networks. (M. Kurosu, Ed.) Lecture Notes

in Computer Science, 6776 (Human Computer International Conference 2011, Human Centered Design), 519-528

 Mutualistic Software Services (MSS) for Large-Scale Networks – A Project

~ xvi ~

Summary and Conclusions
In summary, the project successfully delivered a working system to mutualistically exchange services for

resources to authorized users on authorized computers. MSS guarantees this mutualistic relationship

because the sponsor only delivers services upon request to users when the sponsor is donating

resources. This is true for every sponsor in the ORCA hierarchy. Moreover, the Software Design for

Mutualistic Software Services Version 1.0 (Volume IV of this document) provides the configuration

changes necessary for one to set up a single computer from which one can donate a portion of its

resources to the ORCA CF in exchange for services.

MSS meets its Version 1.0 objective to create a means by which ORCA CF users, such as developers,

experimenters, and researchers, can share and track software services for use within ORCA.

Furthermore, it lays a solid foundation to refine this process in Version 2.0 because it provides a viable

option for advertising and delivering services to current ORCA donors. As experimenters and developers

create more and more services, more and more people will want to donate their resources to gain

services.

 Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

Volume I

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 2 ~

Software Requirements

Specification for

Mutualistic Software

Services (MSS)

Version 1.0

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 3 ~

1. Introduction
According to GENI At A Glance (June 1, 2011), the National Science Foundation sponsors GENI, which is a

large-scale network based on existing infrastructure that approximately 83 academic/industrial teams

and 19 corporations are developing across the United States [1]. Currently, these same entities also

contribute the vast majority of experimental resources to GENI. However, the GENI Systems Overview

explains, “Including real-world users and traffic in GENI is key to providing the fidelity experimenters

need in the GENI suite of infrastructures to make their experimental results potentially relevant to real-

world networks.” It further states that GENI goals are to:

1) Provide the flexibility for researchers to experiment on programmable components.
2) Include a wide range of technologies, to include wireless, and to incorporate new

technologies as they emerge.
3) Permit experiments that act as one expects to see in the real world
4) Strongly support measurement based research.
5) Remove practical research barriers.
6) Support multiple experiments on a shared infrastructure suite.
7) Support a strong isolation of slices, to which donated resources will belong.
8) Ensure a broad array of contributors can donate resources easily.
9) Provide a secure environment safe from subversion.
10) Designed for a 15-20 year lifetime [2].

1.1 MSS Envisioned

In the future, Mutualistic Software Services (MSS) will leverage the GENI need for experimental

resources with the public need for useful software services. A natural benefit of GENI experimentation

is that new services arise from this effort, and so delivering these services to donors in exchange for

resources forms a mutualistic relationship between the two. Unlike the current system where

experimenters share their resources within GENI with little public donation, this product will provide

valuable services in exchange for a small portion of the subscriber's CPU cycles, hard disk space, RAM,

and Internet bandwidth. MSS is available to anyone who donates a slice of his or her networked

resource to GENI.

To meet this objective, MSS will require a central office to oversee the exchange of resources for

services. The MSS Center will develop and maintain MSS standards, but its final incarnation may be as

part of another GENI department, like the GENI Meta-Operations Center (GMOC). The Center will

collect the services from developers and advertise them on a web site, though the developers will

maintain the web pages for the service. In addition, the Center will use the Attribute Description Service

[3] to allow service developers to describe all aspects of their service, such as its purpose, scope, uses,

versions, revisions, rescissions, additions, and other such information as deemed appropriate by the

MSS Center. Donors may then query MSS to choose which services are most useful to their organization

and download the service. Moreover, donors may download as many services as they desire as long as

they are donating to GENI.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 4 ~

Currently, GENI’s Open Resource Control Architecture (ORCA) control framework (CF) already has a

“heartbeat” mechanism in place to ensure donors are donating and resources are available for

experimentation. These heartbeats can carry relevant data, such as how many users are using which

services, how many resources and of which type are available for experimentation, and other useful

data that the MSS Center deems appropriate. Alternatively, the CF developer may choose to separate

usage statistics from heartbeats to decrease collection intervals. In either case, MSS Center will collect

statistics for each service to determine whether a service should receive continued support.

Furthermore, the MSS Center will act as the root of a hierarchy that delivers a subset of MSS services to

the four GENI CFs: PlanetLab, ProtoGENI, ORBIT, and ORCA. For example, MSS Center will maintain

every service, but the ORCA administrator at Duke University will only download services geared

towards ORCA users. The University of Alaska Fairbanks (UAF) ORCA administrator then will download

services as an affiliate of Duke, but may choose a smaller subset of services that fit UAF users. UAF then

may sponsor a single server in Barrow, Alaska, and the Barrow affiliate then may sponsor an even

smaller subset of services that are unique to Barrow users. As the number of offered services grows, so

do the resource donations, to the mutual benefit of GENI and the resource donors.

1.2 MSS at Present
This SRS identifies the requirements to create MSS Version 1.0, which must exhibit key features of the

MSS vision above in order to demonstrate success. Some of these features include:

 A hierarchical services delivery, in which the affiliate may choose all or a subset of sponsored

services.

 A heartbeat check at the CF level to ensure the affiliate is donating resources to its sponsor

before one can download new services.

 A means to install all CF and MSS software on a single computer to allow individual public

participants.

 A process to ensure only authorized users on authorized computers can receive services.

 A method for sponsors to deliver MSS services, service data, and user data to its affiliates.

 A way for sponsors to host virtual and physical clients.

Furthermore, certain elements of the future vision are not necessary in the initial offering of MSS, but

are identified in this document as Version 2.0 requirements. These features are:

 A means to gauge the percentage of resources an affiliate or client is donating.

 The inclusion of the GMOC at the root of MSS.

 The Attribute Description Service.

 A heartbeat check at the virtual and physical client level of service delivery.

 Usage statistics delivery to the CF developer.

In sum, MSS Version 1.0 administrators must be able to host and deliver services to affiliates, physical

resources, and virtual resources from a canonical CF cluster and from a single-server CF cluster as a

proof of concept.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 5 ~

1.1 Purpose
This SRS describes the software functional and nonfunctional requirements for version 1.0 of MSS. The

project team will implement and verify the correct functioning of the system with this document.

Unless otherwise noted, all requirements specified here are high priorities and committed for release

1.0.

1.2 Document Conventions
For ease of use, rules tables within this document begin on new pages so that project team members

may divide it among the teams. The software team must address all Version 1.0 rules within this

document before stakeholders will consider this project complete. Appendix A contains a Data

Dictionary of terms.

1.3 Intended Audience and Reading Suggestions
The audience for this document consists of all favored User Classes listed in the 2.2 User Classes and

Characteristics, and it follows the conventions from Software Requirements (2003, p. 172) [4]:

 1 Introduction
 1.1 Purpose

 1.2 Document conventions

 1.3 Intended Audience and
Reading Suggestions

 1.4 Project Scope

 1.5 References

 2 Overall Description
 2.1 Product Perspective

 2.2 User Classes and
Characteristics

 2.3 Operating Environment

 2.4 Design and Implementation
Constraints

 2.5 User Documentation

 2.6 Assumptions and
Dependencies

 3 System Features
 4 Functional Requirements
 5 External Interface

Requirements
 5.1 User Interfaces

 5.2 Hardware Interfaces

 5.3 Software Interfaces

 5.4 Communications Interfaces

 6 Other Nonfunctional
Requirements
 6.1 Performance Requirements

 6.2 Safety Requirements

 6.3 Security Requirements

 6.4 Software Quality Attributes

 7 Other Requirements
 8 References

 Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

1.4 Project Scope and Product Features
This SRS identifies the requirements to create MSS Version 1.0, which must exhibit key features of the

MSS vision above in order to demonstrate success. Some of these features include:

 A hierarchical services delivery, in which the affiliate may choose all or a subset of sponsored

services.

 A heartbeat check at the CF level to ensure the affiliate is donating resources to its sponsor

before one can download new services.

 A means to install all CF and MSS software on a single computer to allow individual public

participants.

 A process to ensure only authorized users on authorized computers can receive services.

 Other processes to:

o Authenticate users.

o Validate services.

o Encrypt and Decrypt services during service delivery.

 A method for sponsors to deliver MSS services, service data, and user data to its affiliates.

 A way for sponsors to host virtual and physical clients.

Furthermore, certain elements of the future vision are not necessary to demonstrate the functionality of

MSS, and they are identified in this document as Version 2.0 requirements. These features are:

 A means to gauge the percentage of resources an affiliate or client is donating.

 The inclusion of the GMOC at the root of MSS.

 The Attribute Description Service.

 A heartbeat check at the virtual and physical client level of service delivery.

 Usage statistics delivery to the CF origin.

 Secure Socket Layer encryption of the website.

In sum, MSS Version 1.0 administrators must be able to host and deliver services to affiliates, physical

resources, and virtual resources from a canonical CF cluster and from a single-server CF cluster as a

proof of concept.

MSS will permit GENI contributors to receive GENI developed software as services for donating a portion

of their computer resources. Project team members must familiarize themselves with the following in

order to conceptualize MSS, and it is recommended that other stakeholders familiarize themselves with

this material.

 MSS leverages four prevailing technologies to accomplish its goal:

 Open Resource Control Architecture (ORCA), a GENI CF [5]

 Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems)

[6]

 Xen [7] and Kernel-based Virtual Machines (KVM) [8]

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 7 ~

 Linux, Apache, MySQL, and PHP (LAMP) Server [9]

As a use case example, one can find two proposed scenarios that explore the implementation of these

features in:

 A Mutualistic Security Service Model: Supporting Large-Scale Virtualized Environments (2011)

[10]

 Attribute Description Service for Large-Scale Networks (2011) [3]

2. Overall Description

2.1 Product Perspective
MSS is a new system that leverages the need for public computer services and the GENI need for

contributed resources. The system will evolve over subsequent releases to offer automatic lookup

queries based on the initiating resource type and other criteria listed by the resource owner.

It is important to note the difference between the resource owner and the resource user. For example,

a resource owner may be the owner of an organization or a delegated authority, such as a systems

administrator. The resource owner decides which services are appropriate for his or her organizational

needs, acquires the desired services from his or her parent CF, and advertises those services to affiliate

CFs and resource users within the organization. Resource owners may pare these services further based

on mission needs and user groups, such as installing an affiliate CF that only hosts accounting services

for accountants or clerical services for information specialists.

This arrangement forms a hierarchy of service delivery, in which the company provides a small amount

of resources in exchange for valuable services. MSS Version 1.0 will meet all of the requirements

identified as Version 1.0 in this document, with design considerations geared toward meeting Version

2.0 requirements. Research findings of exactly how many experimenters GENI supports has proved

elusive; however Version 2.0 support requirements are based on figures from GENI’s largest CF,

Planetlab,which Princeton University sponsors. Princeton’s Policy Report & Analysis document,

Understanding and Resolving Conflicts (November 13, 2008), lists 4,700 researchers [21], and so 4,700

multiplied by four CFs and doubled for expected growth equals 37,600 MSS users.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 8 ~

2.2 User Classes and Characteristics
User Class Description

Resource Donors

(favored)

These are members of the public who may find GENI services to be useful. Public

donors view GENI Services as practically free because experimenters only use a

portion of the donor’s “unused” resources. However, one might not view

bandwidth, RAM, and CPU cycles as unused because they can range from 0-100%

use very quickly, and so some means of regulating experimenter sharing of these

resources during “slow” times will be considered by the GENI CFs.

Resource Users Resource users do not necessarily own the resource, but use the services on behalf

of the resource owner. For instance, if a small business owner donated 20% of her

computer resources, then her administrative assistant, as a registered resource

user, might have access to a customer billing service.

GMOC The GENI Meta Operations Center, based out of the University of Indiana, is the

central authority for CF interconnections [11]

CFs (favored) Each CF will download the MSS services and updates, and it will deliver them to

their donors. This greatly simplifies the process of deciding who should receive MSS

because if a member of the public does not connect to a CF, he or she cannot

receive the service. This way the parent CF only offers MSS to its own users and

one or more child CFs instead of thousands of individual donors, which reduces

overhead. Furthermore, the originating CF already tracks and connects to its donor

resources through heartbeats, and so this arrangement adds minimal

authentication overhead to the system, while enabling each originating CF to gauge

the MSS impact on donor participation. Though individual CFs determine their own

federation standards, donors must meet some minimum GENI federation standards

before federating resources, and must maintain these standards while connected to

the CF. Lastly, MSS must not burden the CF with additional work. Current CF

administrators must be able to manage MSS, such as performing downloads and

updates, and adding authorized actors (computers) and users as necessary to run

MSS.

Developers

(favored)

Service developers are also the service maintainers. Developers use MSS to share

their services created during the course of research or to fill a particular need, and

they advertise those services to GENI donors. Donors provide a portion of their

resources in exchange for valuable services, and so the developers/researchers have

more resources on which to experiment.

Experimenters Experimenters require resources on which to experiment, and increasing

experimental resources is the main reason for creating MSS. The more resources

experimenters have, the more “at-scale” experiments are possible. Furthermore,

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 9 ~

allowing the public to donate resources provides opportunities for “in the wild”

experiments that the GENI Systems Overview (2008) identifies as crucial to GENI

success [2].

GPO

(favored)

The GPO represents the NSF, which pays for MSS. Service developers must give

GPO recommendations the utmost consideration when forming decisions. One key

aspect of GPO concern is that donor interest and trust in MSS remain firm.

Maintaining donor confidence will ensure project continuation by steadily growing

CFs.

“Pay-for”

Applications

Companies

(disfavored)

Initially, these companies may perceive MSS as a threat, and therefore exert

political pressure on the NSF to end MSS both directly and indirectly. The project

manager will notify the GPO of any correspondence with these groups.

2.3 Operating Environment
Rule Version

1.0 2.0
Environment

OE-1 X X

X

Hardware Platforms: MSS will operate on GENI clusters and single servers.

MSS will operate on large server farms, small servers, personal computers, and

tablet computers.

OE-2

X

X

X

Operating Systems:

MSS is intended to support:

 Linux

o Debian

o Slackware

o RedHat

MSS will support other operating systems, such as:

 Unix

o Macintosh OS X Leopard and above

o FreeBSD

o OpenSolaris

 Windows (in subsequent releases)

o Windows 7

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 10 ~

o Windows Vista

OE-3

X

X

X

X

Web Browsers:

MSS is intended for major web browsers, such as:

 Windows

o Internet Explorer

 Mozilla

o Firefox

 Konquerer

o Safari

o Google Chrome

In addition, MSS must work on a text-based web browser in order to support

virtual machines and computers without desktop environments:

 w3m

OE-4 X X

X

Geographical Locations: Release 1.0 only supports US donors due to funding.

Subsequent releases may include CFs from other countries, which may have their

own MSS offerings.

OE-5 X X Users: US public donors to GENI CFs.

OE-6 X X Servers: Release 1.0 support will focus on Linux server platforms.

OE-7

X

X

Databases:

MSS will maintain at least three separate databases for:

 Service data

 CF data

 User and client data

MSS will use the Attribute Description Service to track service, user, and client

data.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 11 ~

2.4 Design and Implementation Constraints
Rule Version

1.0 2.0
Constraint

CO-1 X This system’s design, code, and maintenance documentation shall conform to the

W3C Quality Assurance Interest Group specifications [13].

CO-2 X X Web design will be similar to the CF style.

CO-3 X X OS Versions: Design MSS only for supported versions of operating systems.

CO-4 X X Web Browser Versions: Design MSS only for supported versions of web browsers.

2.5 User Documentation
Rule Version

1.0 2.0
Documentation

UD-1 X The services shall provide an online, cross-linked help system in HTML that

describes all service functions.

UD-2 X A “Quick Start” document shall provide screenshots of applicable windows and

how the user shall interact with them for each major operating system. The ORCA

User Manual (2011) serves as an example [12].

UD-3 X X The service shall provide the ability to download the user manual in Portable

Document Format (PDF).

UD-4 X The system shall provide CF operators with online documentation on how to

download MSS additions.

UD-5 X The system shall provide CF operators with online documentation on how to

download MSS revisions.

UD-6 X The system shall provide CF operators with online documentation on how to

process MSS rescissions.

UD-7 X X The system shall provide CF operators with online documentation on how to

maintain MSS versions.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 12 ~

2.6 Assumptions and Dependencies
Rule Version

1.0 2.0
Documentation

AS-1 X X CFs are connected in a hierarchical tree

AS-2 X X The child CF can synchronize MSS services with its parent CF.

AS-3 X X Parent CFs have the capacity to distribute services to its child CF and donors

AS-4 X X All CFs will send “heartbeats” to its originating CF

DE-4 X The system will provide CF operators with online documentation on how to

download MSS revisions.

DE-5 X The system will provide CF operators with online documentation on how to

process MSS rescissions.

DE-6 X The system will provide CF operators with online documentation on how to

maintain MSS versions.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 13 ~

3. System Features
Feature Description Requirements Version 1.0

FE-1 CF driven

federation

standards

DESCRIPTION Each CF decides whether donors meet federation

requirements, instead of MSS acting as a central

authority for making this determination. This allows for

greater autonomy among CFs and LSNs because each

can have stringent standards that target certain donor

types or relaxed standards that accept a broad variety

of resources.

 PRIORITY HIGH

 STIMULUS Individual donors choose a CF to which he or she

contributes resources.

 RESPONSE That CF decides whether the donor meets its

federation standards, offers steps to meet the

standards, or recommends another CF.

 FUNCTIONAL

REQUIREMENTS

TBD by each CF.

FE-2 CF controlled

service

DESCRIPTION Each CF determines whether the donor meets its

standards and receives MSS. This may be as simple as,

“while you are connected to this CF, you receive this

service,” or the CF may limit the service, such as “if you

do not maintain a connection 24 hours a day, you do

not receive the service.” CFs already have a heartbeat

mechanism in place to determine connection times.

 PRIORITY HIGH

 STIMULUS An individual donor chooses a CF to which he or she

contributes resources.

 RESPONSE That CF decides whether the donor meets its

federation standards, offers steps to meet the

standards, or recommends another CF.

 FUNCTIONAL

REQUIREMENTS

TBD by each CF.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 14 ~

FE-3 Software

Updates

DESCRIPTION MSS delivers MSS software updates through the MSS

interface. Hierarchical delivery conserves bandwidth

and streamlines service decisions (FE-1, 2)

 PRIORITY HIGH

 STIMULUS MSS finishes final testing of its next software update.

 RESPONSE MSS delivers the system update to participating CFs in

GENI by the end of the next business day.

 FUNCTIONAL

REQUIREMENTS

MSS and the participating CF:

o Must be connected to the Internet.

o Must authenticate before transmission.

o Must use data encryption.

o Must verify valid receipt.

FE-4 Service

Updates

DESCRIPTION MSS delivers all GENI services through the MSS

interface. Hierarchical delivery conserves bandwidth

and streamlines service decisions (FE-1, 2)

 PRIORITY HIGH

 STIMULUS MSS finishes final testing of its service or service

update.

 RESPONSE MSS delivers the service or update to participating CFs

in GENI by the end of the next business day.

 FUNCTIONAL

REQUIREMENTS

MSS and the participating CF:

o Must be connected to the Internet.

o Must authenticate before transmission.

o Must use data encryption.

o Must verify valid receipt.

FE-5 Donor

Web

Interface

DESCRIPTION MSS queries will be conducted over a web interface

using an appropriate authentication mechanism.

 PRIORITY HIGH

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 15 ~

 STIMULUS Donor initiates a query for a service based on his or her

parent CF service list.

 RESPONSE MSS responds with a list of services available to the

donor.

 FUNCTIONAL

REQUIREMENTS

The web interface must support the major browsers

listed in 2.3 Operating Environment.

Feature Description Requirements Version 2.0

FE-6 Service

Management

interface

DESCRIPTION ADS will provide “cradle-to-grave” service management

by tracking service revisions, rescissions, dependencies,

and other life-cycle data that an appropriate authority

can add, edit, and delete.

 PRIORITY HIGH

 STIMULUS Manager adds a new service

Manager adds a new developer.

 RESPONSE The interface responds whether the new entry is

complete.

 FUNCTIONAL

REQUIREMENTS

The web interface must support the major browsers

listed in 2.3 Operating Environment.

FE-7 GENI Research

Information

DESCRIPTION GENI provides this venue for GENI experimenters to

post service “tips and tricks,” advise donors and other

experimenters, post editorials and current research

information, and any other information that GENI sees

fit to post. It will be in a wiki format. The GUI and

Online Users Manual will have links to this wiki.

 PRIORITY LOW

 STIMULUS Donor clicks GENI Research Information Wiki link

 RESPONSE GENI Research Information Wiki link comes up.

 FUNCTIONAL

REQUIREMENTS

GENI provides server space for MSS wiki. The MSS wiki

shall use an appropriate database.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 16 ~

FE-8 GENI Notices DESCRIPTION GENI provides notices of upcoming events, information

on GENI experiments, how contributions help GENI

develop network innovation, and any other information

that GENI sees fit to post.

 PRIORITY LOW

 STIMULUS Donor clicks GENI Notices link

 RESPONSE GENI Notices link comes up.

 FUNCTIONAL

REQUIREMENTS

GENI provides server space for GENI Notices. This may

link to a web site GENI already owns.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 17 ~

4. Functional Requirements
Rule Version

1.0 2.0
Interface

FR-1 X X Resource Owner User data must be safeguarded.

FR-2 X X MSS will use industry approved encryption standards, such as Digital Signature

Algorithm (DSA) encryption.

FR-3 X X Only resource donors will have access to new GENI Services. MSS will rely on

heartbeats sent from the resource to the originating CF to ensure this is so.

FR-4 X ADS will track service usage

FR-5 X X Resource owners will have a means to control which authorized users can download

services from its parent CF

FR-6 X X MSS-CENTER will support service mirroring

FR-7 X X MSS-PARENT will support service mirroring

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 18 ~

5. External Interface Requirements

5.1 User Interfaces

Rule Version
1.0 2.0

Interface

UI-1 X X MSS screen displays shall conform to W3C formatting standards [13].

UI-2 X MSS will comply with W3C handicap accessibility standards [13].

UI-3 X X MSS shall permit complete navigation using the keyboard alone, in addition to using

mouse and keyboard combinations.

UI-4 X X MSS shall comply with GENI CF style designs

UI-5 X The system shall display a help link on each page that links to a help page. At a

minimum, the help page will contain a link to:

o The user manual

o The online manual

o The wiki

o The GENI Notification web page

UI-6 X X The web pages shall permit complete navigation using the keyboard alone, in addition

to using mouse and keyboard combinations.

5.2 Hardware Interfaces
At a minimum, MSS-CENTER will maintain these components:

Rule Version
1.0 2.0

Interfaces

HI-1 X MSS-CENTER will support web site mirroring.

HI-2 X A web server will host all of the web pages necessary for finding service information.

The web pages will include the Home page, About, News, Wiki, Events, Member,

Links, and Help with appropriate information included in each. The Links page will

contain hyperlinks to helpful service information, with a GENI link prominently

displayed.

HI-3 X A DNS server will act as the authoritative name server for MSS. Authoritative name

servers are assigned to be responsible for their particular domains, and in turn can

assign other authoritative name servers for their sub-domains. It will also implement

the recursive algorithm necessary to resolve a given name starting with the DNS root

through to the authoritative name servers of the queried domain. With this function

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 19 ~

implemented in the name server, user applications gain efficiency in design and

operation [14].

HI-4 X A communications server shall be an enterprise real-time communications server,

providing the infrastructure for enterprise instant messaging, presence, file transfer,

peer-to-peer and multiparty Voice and Video calling, ad hoc and structured

conferences (audio, video and web) and PSTN connectivity. These features are

available within an organization, between organizations, and with external users on

the public internet, or standard phones, on the PSTN as well as SIP trunking [15].

HI-5 X X A database server will contain the information about MSS services and Resource

Owners/Users data.

HI-6 X A systems administration server will utilize Simple Network Management Protocol

(SNMP) and Cacti, among other tools. SNMP is a UDP-based network protocol. It is

used mostly in network management systems to monitor network-attached devices

for conditions that warrant administrative attention [16]. Cacti is a complete network

graphing solution [under the GNU General Public License] designed to harness the

power of RRDTool's data storage and graphing functionality. Cacti provides a fast

poller, advanced graph templating, multiple data acquisition methods, and user

management features out of the box. All of this is wrapped in an intuitive, easy to use

interface that makes sense for LAN-sized installations up to complex networks with

hundreds of devices [17].

HI-7 X A load balancer will distribute workload evenly across two or more computers,

network links, CPUs, hard drives, or other resources, in order to get optimal resource

utilization, maximize throughput, minimize response time, and avoid overload. Using

multiple components with load balancing, instead of a single component, may

increase reliability through redundancy. The load balancing service is usually provided

by a dedicated program or hardware device (such as a multilayer switch or a DNS

server) [18].

At a minimum, MSS-ORIGIN/AFFILIATES will maintain these components:

Rule Version
1.0 2.0

Interfaces

HI-8 X X Single-server components will connect behind a firewall

HI-9 X X Constant connection to the Internet through a Cable Modem, Direct Service Line, or

other network connection

HI-10 X X A computer resource, provisioned according to a GENI CF standard.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 20 ~

5.3 Software Interfaces
Rule Version

1.0 2.0
Interface

SI-1 MSS-ENTITY (CENTER, ORIGIN, AFFILIATE)

SI-1.1 X MSS-ENTITY shall maintain MSS in accordance with MSS-CENTER standards.

SI-1.2 X X MSS-ENTITY shall connect through an encrypted means

SI-1.3 X X MSS-ENTITY shall deliver services to its children.

SI-1.4 X X MSS-ENTITY shall deliver MSS information to its children.

SI-1.5 X X MSS-ENTITY shall maintain a hash, such as Secure Hash Algorithm (SHA), for all

services it maintains as proof of the correct download.

SI-1.6 X X MSS-ENTITY shall maintain a subset of service distributions for itself and its

children according to MSS-CENTER standards.

SI-1.7 X MSS-ENTITY shall maintain current ADS management information, such as

additions, revisions, and rescissions for all of its services.

SI-1.8 X MSS-ENTITY shall send heartbeats to its MSS-ORIGIN.

SI-1.9 X MSS-ENTITY shall send registered user information to its parent

SI-1.9.1 X MSS user information will only contain what MSS-CENTER requires to determine

whether software should receive continued support, be revised, rescinded, and

other similar data.

SI-1.10 X MSS-ENTITY shall be chained through its parent to MSS-CENTER in normal

operation, excepting short, unplanned periods.

SI-1.11 X MSS-ENTITY shall maintain its connection to its children in normal operation,

excepting short, unplanned periods.

SI-1.12 X MSS-ENTITY shall transmit service download statistics for itself and its children to

its MSS-ORIGIN.

SI-2 MSS-CENTER

SI-2.1 X MSS-CENTER shall approve ADS definitions.

SI-2.2 X MSS-CENTER shall approve new and existing services

SI-2.3 X MSS-CENTER shall maintain all MSS services.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 21 ~

SI-2.4 X MSS-CENTER shall provide a web site for service developers to deliver service

information to users (HI-2)

SI-2.5 X The developer’s web site shall have a means to log in securely and prevent

tampering with its web pages.

SI-3 MSS-ORIGIN

SI-3.1 X X MSS-ORIGIN shall maintain a current GENI CF.

SI-4 MSS-AFFILIATE

SI-4.1 X X MSS-AFFILIATE shall maintain a current GENI CF.

SI-5 MSS-RESOURCE

SI-5.1 X X MSS-RESOURCE shall be authorized by its parent.

SI-6 MSS-USER

SI-6.1 X X MSS-USER shall register under his or her parent CF.

SI-7 MSS-DEVELOPER

SI-7.1 X MSS-DEVELOPER shall register as a MSS developer under his or her parent CF.

SI-7.2 X MSS-DEVELOPER shall submit service information to the developer’s website

according to MSS-CENTER standards.

SI-7.3 X MSS-DEVELOPER shall submit a service to MSS according to MSS-CENTER

standards.

5.4 Communications Interfaces
Rule Version

1.0 2.0
Interfaces

CI-1 X MSS employees shall use an email application that uses these protocols at a

minimum:

 IMAP

 POP

 SMTP

CI-2 X MSS-CENTER shall have an HTTP secure method for customers to contact a central

mailbox.

CI-3 X X MSS-ENTITY shall transfer files using at least DSA encryption

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 22 ~

CI-4 X MSS-CENTER shall set up a secure FTP box for any other customer transfers.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 23 ~

6. Other Nonfunctional Requirements

6.1 Performance Requirements

Rule Version
1.0 2.0

Interfaces

PE-1 X MSS-CENTER will support site mirroring and return to service within 1 minute of a

hard disk failure. (HI-1)

PE-2 X A web server will act as the primary interface between the public and the service, and

it will host all of the web pages necessary for MSS-CENTER interaction. Release 2.0

will support 37,600 visitors. (HI-2)

PE-3 X A DNS server will act as the authoritative name server for MSS. Release 2.0 will

support 37,600 visitors. (HI-3)

PE-4 X A communications server shall be an enterprise real-time communications server.

Release 2.0 will support 37,600 visitors. (HI-4)

PE-5 X A database server will contain the ADS service information loaded into MSS-CENTER.

Release 2.0 will support 37,600 visitors. (HI-5)

PE-6 X A systems administration server is used mostly in network management systems to

monitor network-attached devices for conditions that warrant administrative

attention. Release 2.0 will support 37,600 visitors. (HI-6)

PE-7 X A load balancer will distribute workload evenly across MSS-CENTER. Release 2.0 will

support 37,600 visitors. (HI-7)

PE-8 X Routers will interconnect all of these components and provide a connection to the

internet. Release 2.0 will support 37,600 visitors. (HI-8)

6.2 Safety Requirements
None listed

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 24 ~

6.3 Security Requirements
List the security requirements not covered elsewhere within this document.

Rule Version
1.0 2.0

Requirement

MSS-USER

SE-1 X X Must register with a password

SE-2 X Read the End User License Agreement and electronically sign his or her

understanding with an “I agree” button before using the service.

SE-3 X Use CAPCHA when emailing MSS-CENTER over HTTP

MSS-CENTER

SE-4 X Will anonymize subscriber information to the greatest extent possible to

guard against personal information loss.

SE-5 X Will use strong password protection, which will be enforced by the system

SE-6 X Must use a physical security token to access workstations and servers.

SE-7 X Passwords must be changed every 90 days

MSS-ORIGIN/
AFFILIATE

SE-8 X Will anonymize subscriber information to the greatest extent possible to

guard against personal information loss.

SE-9 X Will use strong password protection, which will be enforced by the system

6.4 Quality Attributes
Rule Version

1.0 2.0
Requirement

Flexibility X MSS should be flexible enough to work on several manufacturer-supported

operating systems such as Windows, Linux, and Macintosh.

FL-1 X A maintenance programmer who has at least six months experience

programming a Windows supported operating system shall be able to update

MSS data and services within one hour.

FL-2 X X A maintenance programmer who has at least six months experience

programming a Linux supported operating system shall be able to update MSS

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 25 ~

data and services within one hour.

FL-3 X A maintenance programmer who has at least six months experience

programming a Macintosh supported operating system shall be able to update

MSS data and services within one hour.

Integrity X The MSS Chief Security Officer has the final say in what security authentication

measures are implemented to ensure appropriate measures are taken. He or

she should also keep a history of changes to the security authentication

measures.

IN-1 X The MSS CSO must approve any change to MSS security authentication

protocols in writing.

IN-2 X The MSS CSO must maintain records of changes to security authentication

protocols for 10 years.

Reliability X X MSS shall only be unavailable for 24 hours per month during peak hours, and 48

hours per month during non-peak hours.

RE-1 X X MSS shall be at least 96.77% available from 6:00 a.m. EST to 10:00 p.m. EST.

RE-2 X X MSS shall be at least 93.75% available from 10:00 p.m. EST to 6:00 a.m. EST.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 26 ~

7. Other Requirements
At least one GENI CF must work on a single server in order to gain public resource donations. A key

requirement for MSS Version 1.0 is developing a systems design so that all software required by one CF

and all MSS software works on a single server.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 27 ~

8. References
[1] BBN Technologies. (June 1, 2011). GENI at a Glance. GENI. Retrieved on April 7, 2012, from:

http://www.geni.net/wp-content/uploads/2011/06/GENI-at-a-Glance-1Jun2011.pdf

[2] BBN Technologies. (2008, September 29). GENISysOvrvw092908.pdf. Retrieved May 30, 2010, from

GENI System Overview: http://groups.geni.net/geni/attachment/wiki/

[3] Kline, D., & Quan, J. (2011). Attribute Description Service for Large-Scale Networks. (M. Kurosu, Ed.)

Lecture Notes in Computer Science, 6776 (Human Computer International Conference 2011,

Human Centered Design), 519-528

[4] Wiegers, K. (2003). Software Requirements (2nd ed.). Redmond: Microsoft Press.

[5] RENCI. Open Resource Control Architecture. (August 13, 2011). Renaissance Computing Institute.

Retrieved December 8, 2011, from http://groups.geni.net/geni/wiki/ORCABEN

[6] Eucalyptus Systems. Eucalyptus. Eucalyptus Systems, Inc. Retrieved December 8, 2011, from

http://www.eucalyptus.com/

[7] Citrix. Xen. (2011). Citrix Systems, Inc. Retrieved December 8, 2011, http://xen.org/

[8] RedHat. KVM. (2011). RedHat Emerging Technology Project. Retrieved December 8, 2011, from

http://www.linux-kvm.org/page/Main_Page

[9] Wikipedia. (March 23, 2012). LAMP (software bundle). Wikipedia.org. Retrieved on March 23, 2012

from: http://en.wikipedia.org/wiki/LAMP_(software_bundle)

[10] Quan, J., Nance, K., & Hay, B. (May/June 2011). A Mutualistic Security Service Model: Supporting

Large-Scale Virtualized Environments. IT Professional (IEEE), 18-23

[11] GENI Meta-Operations Center. (2010). GMOC Concept of Operations. Retrieved November 10, 2010,

from GMOC: http://gmoc.grnoc.iu.edu/uploads/8i/Gu/8iGu80-

LqQB37VU4ZE1i5g/GENI_Concept_of_Operations-final.pdf

[12] Quan, John. ORCA 3.0 User Manual. (June 30, 2011). Retrieved December 8, 2011, from

ORCA3.0_User_Manual_20110630

[13] Worldwide Web Consortium. (2010, April 29). W3C Quality Assurance Interest Group. Retrieved

December 8, 2010, from The Matrix of W3C Specifications: http://www.w3.org/QA/TheMatrix

 [14] Wikipedia. (2010, April 16). Domain Name System. Retrieved December 6, 2010, from

Wikipedia.org: http://en.wikipedia.org/wiki/Domain_Name_System

[15] eHow Inc. (2010). Office Communications Server. Retrieved Dec 6, 2010, from eHow:

http://www.ehow.com/office-communications-server/

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 28 ~

[16] Wikipedia. (2010, April 12). Simple Network Management Protocol. Retrieved April 17, 2010, from

Wikipedia.org: http://en.wikipedia.org/wiki/Snmp

[17] The Cacti Group. (2009). About Cacti. Retrieved December 6, 2010, from Cacti.net:

http://www.cacti.net/

[18] Wikipedia. (2010, April 14). Load balancing (computing). Retrieved December 6, 2010, from

Wikipedia.org: http://en.wikipedia.org/wiki/Load_balancing_(computing)

[19] DS Development Software. (2010). Email Protocols: IMAP, POP3, SMTP and HTTP. Retrieved

December 10, 2010, from Email Productivity Software:

http://www.emailaddressmanager.com/tips/protocol.html

[20] Wikipedia. (2010, October 27). Kernel (computing). Retrieved November 1, 2010, from

Wikipedia.org: http://en.wikipedia.org/wiki/Kernel_(computing)

[21] Peterson, L. (November 13, 2008). Understanding and Resolving Conflicts on PlanetLab. Princeton

University. Retrieved on April 11, 2012, from: http://www.cs.princeton.edu/~llp/policy.pdf

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 29 ~

Appendix A

Data Dictionary
ADS – Attribute Description Service [3]

Aggregate – a collection of components that usually comprise a system

Bandwidth - a bit rate measure of available or consumed data communication resources expressed in

Gigabits/second.

CF – Control Framework

Component – a physical computer resource, such as a router, switch, computer, phone, or copy machine

Community – MSS users identified by a GENI control framework

Contributor – an entity that donates a portion of its resources to GENI

Control framework – one of four GENI architectures used to federate computer resources

Donation – Donations include nearly all types of network resources, such as computers, network routers

and switches, cell phones, computer tablets, copy machines, and so on. However, MSS is only

available for computers as of this writing.

Experimenter – one who conducts network research on GENI

Federate – incorporate one’s computer resource into a GENI control framework

File list – hierarchical locations of files on a resource

GENI – Global Environment for Network Innovation

GUI – Graphical User Interface

Hard Disk – Non-volatile storage device for digital media

HTTP (Hypertext Transfer Protocol) – is not a protocol dedicated for email communications, but it can be

used for accessing your mailbox. In addition, called web based email, this protocol can be used

to compose or retrieve emails from your account. Hotmail is a good example of using HTTP as an

email protocol [19].

IMAP (Internet Message Access Protocol) – Is a standard protocol for accessing e-mail from your local

server. IMAP is a client/server protocol in which e-mail is received and held for you by your

Internet server. As this requires only a small data transfer this works well even over a slow

connection such as a modem. Only if you request to read a specific email message will it be

downloaded from the server. You can also create and manipulate folders or mailboxes on the

server, delete messages etc… [19]

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 30 ~

Insertable media – a storage device that is not native to the resource, such as a USB drive, Compact Disc,

and external hard drive

ISP – Internet Service Provider

Kbps – Kilobytes per second

Kernel - In computing, the kernel is the central component of most computer operating systems; it is a

bridge between applications and the actual data processing done at the hardware level. The

kernel's responsibilities include managing the system's resources (the communication between

hardware and software components). Usually as a basic component of an operating system, a

kernel can provide the lowest-level abstraction layer for the resources (especially processors

and I/O devices) that application software must control to perform its function. It typically

makes these facilities available to application processes through inter-process communication

mechanisms and system calls [20].

LSN – Large-Scale Network. GENI is an example of a large-scale network.

LTS – refers to a Long-Term Service agreement provided by many operating system developers, such as

Ubuntu.

Malware – includes computer viruses, computer worms, Trojan horses, most rootkits, spyware,

dishonest adware and other malicious and unwanted software, including true viruses.

Mbps – Megabytes per second

MSS – Mutualistic Software Services

MSS-CENTER – refers to the main MSS office, where MSS is developed and distributed to participating

control frameworks.

MSS-AFFILIATE – refers to all child nodes of the MSS-ORIGIN control framework. At a minimum, MSS-

AFFILIATE will contain its MSS-ORIGIN control framework and a subset of its services.

MSS-DEVELOPER – refers to a member of academia or business who submits a service to MSS.

MSS-ENTITY – refers to MSS-CENTER, MSS-ORIGIN, and MSS-AFFILIATE. These are all of the MSS entities

that have a control framework installed.

MSS-ORIGIN – refers the control framework developer and maintainer. MSS-ORIGIN falls directly

beneath MSS-CENTER in the hierarchy.

MSS-RESOURCE – a resource without a control framework, such as a physical computer or virtual

machine.

MSS-USER – refers to an authorized user of a MSS-RESOURCE due to his or her working relationship with

a resource owner.

 Volume I: Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0

~ 31 ~

Node – a computer

NSF – National Science Foundation

OS – Operating System

POP (Post Office Protocol 3) – provides a simple, standardized way for users to access mailboxes and

download messages to their computers. When using the POP protocol all your email messages

will be downloaded from the mail server to your local computer. You can choose to leave copies

of your emails on the server as well. The advantage is that once your messages are downloaded

you can cut the internet connection and read your email at your leisure without incurring

further communication costs. On the other hand you might have transferred a lot of message

(including spam or viruses) in which you are not at all interested at this point [19].

Programmable component – a network resource with a modifiable operational instruction set

RAM – Random Access Memory. For MSS, this refers to the computer’s volatile memory, such as

Dynamic RAM (DRAM).

Real-world user – a private citizen

Resource – a portion or an entire physical computer hardware component. MSS is only concerned with

resources such as laptops, desktops, and computer tablets (such as iPad).

Resource Owner – one who is authorized to donate all or a portion of a resource to GENI

Slice – a collection of one or more aggregates and components

SMTP (Simple Mail Transfer Protocol) – is used by the Mail Transfer Agent (MTA) to deliver your email to

the recipient's mail server. The SMTP protocol can only be used to send emails, not to receive

them. Depending on your network / ISP settings, you may only be able to use the SMTP

protocol under certain conditions (see incoming and outgoing mail servers [19].

SRS – Software Requirements Specification

Standard – the minimum hardware and software configuration required to federate into GENI

Traffic – the movement of information across the Internet

UI – User Interface

USB – universal serial bus

Wireless – radio-based Internet connection

 Software Architecture for Mutualistic Software Services (MSS) Version 1.0

Volume II

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 33 ~

Software Architecture

for Mutualistic Software

Services (MSS)

Version 1.0

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 34 ~

1. Introduction

1.1 Document Introduction
The Software Requirements Specification for Mutualistic Software Services Version 1.0 identifies

Mutualistic Software Services (MSS) as a means for GENI to advertise and deliver services that

experimenters develop in exchange for experimental resources. As Len Bass et al., recommend in

Software Architecture in Practice (2003), this document intends to develop an architecture for the “…

structures of the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them” [1]. Therefore, this document will develop an

architectural skeleton based on the functional requirements, non-functional requirements, and

constraints identified in the SRS.

1.2 Business Decisions
Mutualistic Software Services (MSS) addresses several experimenter, researcher, developer,

entrepreneur, and resource owner needs. Its most basic meaning derives from:

 Mutualistic – a win-win relationship in which both parties benefit.

 Software – the tools that those parties use to perform experiments, do research, sell products,

run resources, and create services, to include the created services.

 Services – the virtual machine images, libraries, scripts, code, directions, and other useful

products, to include the advertising of these products to stakeholders.

MSS has four different business models: trade, monetized, GENI-only, and a hybrid of the first three. All

but the GENI-only model hinges on the idea that GENI requires many resources to create at-scale

network experiments, and all models recognize that experimenters need a way to advertise and share

experiments. In the trade model, GENI experimenters create services in the course of research that are

unique and valuable, and public organizations and individuals can donate a portion of their resources in

exchange for these worthy services. The monetized model is in keeping with the US Ignite program

explained below, which relies on the notion that GENI experimenters will develop services that are so

useful that people are willing to pay for them. The GENI-only model considers that GENI experimenters

create software to create services, and that both of these products are useful to other experimenters.

The hybrid model combines one or more of the first three models. However, no one will know about

these products within any model unless one creates some advertising and sharing mechanisms.

The MSS architecture relies on distributed service delivery because this fits all of the models, if one

considers a monetized system to have one parent with every other entity as its child. Therefore, the

architectural perspective is that MSS will use the trade model because it is the most highly distributed of

the three.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 35 ~

1.3 System Purpose and Scope
MSS leverages the GENI need for experimental resources with the public’s need for useful services, and

serves to meet the goals of two National Science Foundation (NSF) sponsored programs. The Computer

& Information Science & Engineering (CISE) branch of the NSF sponsors U.S. Ignite:

US Ignite is an initiative to spark the development of killer apps in areas of national priority: health,

education, energy, economic development (including advanced manufacturing), transportation, and

public safety on an ultra high speed (>100 Mbps up- and download), deeply programmable (not requiring

internet protocol) and sliceable network. US Ignite is doing this by: 1) funding researchers and developers

to create applications and services, and 2) stitching together an at-scale testbed with real users that

researchers, developers, and entrepreneurs can use as a platform to develop applications and services [2].

The CISE also sponsors GENI, which is the “at scale testbed” on which U.S. Ignite will develop the “killer

apps” of the future. The GENI Project Office describes GENI in this way:

GENI, a virtual laboratory for exploring future internets at scale, creates major opportunities to understand,

innovate and transform global networks and their interactions with society. Dynamic and adaptive, GENI

opens up new areas of research at the frontiers of network science and engineering, and increases the

opportunity for significant socio-economic impact. GENI will:

 support at-scale experimentation on shared, heterogeneous, highly instrumented infrastructure;

 enable deep programmability throughout the network, promoting innovations in network science,

security, technologies, services and applications; and

 provide collaborative and exploratory environments for academia, industry and the public to catalyze

groundbreaking discoveries and innovation [3].

MSS serves as the conduit through which GENI experimenters gain resources for at-scale experiments

and U.S. Ignite delivers services. Some examples of new services in development by GENI experimenters

are uCap, FlowScale, OpenFlow, and MobilityFirst. All of these were highlighted in a recent GENI “News

and Events” article [4], which is reproduced in its entirety in Appendix C.

1.4 Definitions, Acronyms, and Abbreviations
Please find definitions, acronyms, and abbreviations in Software Requirements Specification for

Mutualistic Software Services Version 1.0.

 Appendix A: Data Dictionary

1.5 System Overview
MSS solves the problem of providing a vast number of real-world experimental resources to GENI

experimenters by providing a means to “pay” for the resources with the services they create. This

arrangement is mutually beneficial to resource donors, who must only provide a small portion of their

resources in order to receive the services. MSS resides on one computer in a GENI cluster and

distributes services rooted at MSS-CENTER to its subordinate CFs. MSS-ORIGINS deliver a subset of

services to their MSS-AFFILIATES, and this distribution continues until services are distributed to all MSS-

RESOURCES. This forms a hierarchical tree, with each parent CF acting as a node and its children as its

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 36 ~

branches. MSS branches are capable of autonomy in that a MSS-ENTITY can continue using downloaded

services even when its upstream connection to the MSS-CENTER is severed. However, the MSS-ENTITY

must be sending heartbeats to its MSS-ORIGIN in order to receive new services.

MSS favors this distributed method over a centralized service warehouse because it:

 reduces donors’ operational reliance on MSS-CENTER

 distributes MSS management to the lowest levels required

 allows each MSS-ENTITY to choose only those services it finds useful or necessary

 enables donors to choose a MSS-ENTITY that delivers services most in line with their objectives

 gives donors a means to manage their remaining resources with the required CF software

 gives donors a means to virtualize their remaining resources with the required CF software

In addition, sending “heartbeats” from an MSS-ENTITY up to its MSS-ORIGIN serves a two-fold purpose.

In Version 1.0, sending heartbeats from the resource ensures that the CF is operational, that donated

resources are available for experimentation, and that the resource is authorized to receive services.

In Version 2.0, adding intelligence-filled heartbeats from an MSS-ENTITY to its MSS-ORIGIN provides a

means to deliver information, such as which services are in use, how many users are using the service,

and other data required by the MSS-CENTER. The MSS-ORIGIN may separate MSS heartbeats from its CF

heartbeats, but it will deliver the MSS data to MSS-CENTER. This data is ultimately serves as usage

statistics to determine which services deserve continued support.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 37 ~

2. Decomposing the SRS

2.1 System Description
MSS has four main components: MSS-CENTER, MSS-ORIGIN, MSS-AFFILIATE, and MSS-RESOURCE. The

actual hardware and software used may vary from component to component, but each component

must support service delivery to its children. As of this writing, MSS will only support the remote server

as a single-server MSS/CF installation, as described in section 5.1 Remote Server Model.

Currently, the MSS-AFFILIATE architecture only supports computers with two network interface cards

and a static IP address or a Fully Qualified Domain Name. ORCA clusters meet these requirements, to

include the remote server. In addition, later versions of MSS will support the Windows OS; therefore,

one must develop MSS with common workstations and laptop computers in mind.

2.2 Functional Attributes
The System must:

 Deliver services over an Internet connection

 Provide a management interface for MSS administrators

 Allow the administrator to choose a subset of parent services

 Allow the user to choose a service from the parent CF

 Check for heartbeats on MSS-ORIGIN

2.3 Non-functional Attributes
The System shall have:

 Portability

 Autonomy

 Securability

 Credibility

 Integrability

 Extensibility

 Interoperability

 Usability

2.4 System Constraints

2.4.1 Hardware Constraints

Mutualistic Software Services Software Requirements Specification, Version 1.0 lists:

 5.2 Hardware Interfaces

 6.1 Performance Requirements

The following tables list examples to help describe the minimum hardware necessary to host MSS-

CENTER and a MSS-enabled CF for each component.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 38 ~

Table 1. MSS-CENTER System Description

Attribute Value

Multiple Servers These servers may be used as a platform for other MSS Center functions.

Note: Servers will be similar to MSS-ORIGIN/AFFILIATE below.

Table 2. MSS-ORIGIN/AFFILIATE Head Node System Description

Attribute Value [5]

Make Dell

Model PowerEdge C1100

Processor Quad-Core Intel® Xeon® Processor E5620 (12M Cache, VT enabled)

Processor Clock Speed 2.40 GHz, 5.86 GT/s Intel® QPI

System RAM 12 GB

System Storage 1 TB

Operating System Unix, Linux with hypervisor support

Table 3. MSS-ORIGIN/AFFILIATE Worker Node System Description

Attribute Value [5]

Make Dell

Model PowerEdge C1100

Processor 2 Quad-Core Intel® Xeon® Processors E5620 (12M Cache, VT enabled)

Processor Clock Speed 2.40 GHz, 5.86 GT/s Intel® QPI

System RAM 48 GB

System Storage 250 GB

Operating System Unix, Linux with hypervisor support

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 39 ~

Table 4. MSS-AFFILIATE (and Remote Server) System Description

Attribute Value [6]

Make Dell

Model PowerEdge 2850

Processor 2 Dual-core 64-bit Intel Xeon processors

Processor Clock Speed 2.8GHz

System RAM 12GB DDR-2 400 SDRAM

System Storage > 1 TB

Operating System Unix, Linux with hypervisor support

Table 5. MSS-RESOURCE Physical System Description

Attribute Value [7]

Make Apple

Model MacBook Pro 15”

Processor 2.8GHz Intel Core 2 Duo processor with 6MB shared L2 cache

Processor Clock Speed 2.8GHz

System RAM 4GB (two 2GB SO-DIMMs) of 1066MHz DDR3 SDRAM

System Storage > 300 GB

Operating System Unix, Linux, (and Windows in subsequent releases)

2.4.2 Software Constraints

In addition to the Constraints listed in Software Requirements Specification for Mutualistic Software

Services Version 1.0

 2.3 Operating Environment

 2.4 Design and Implementation Constraints

The System must:

 Support a CF, such as ORCA [8]

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 40 ~

 Support a CF-approved virtualized or paravirtualized hypervisor, such as Xen [9]

 Support a CF-approved virtualization technology, such as Eucalyptus [10]

 Support a CF-approved image-passing system, such as Image Proxy [11]

 Only modify the OS in accordance with CF instructions

2.5 User Characteristics

2.5.1 User Classes and Characteristics

Please find this section in Software Requirements Specification for Mutualistic Software Services Version

1.0

 2.2 User Classes and Characteristics

2.5.2 User Groups and Attributes

A typical CF has several actor roles that a member of a MSS-ENTITY fills. The System must support:

Table 6. User Groups and Attributes

Actor Attribute

Resource Donor Has the authority to donate resources to GENI in exchange for services

Administrator Manages all aspects of the CF within the organization in accordance with MSS

Center policies and organizational policies, to include:

 Availability

 Access

 Control

 Child CF connections

 Parent CF connection

 Services subset

Site Each resource has one or more site actors. For instance, each of the following

resources would have one site actor:

 Eucalyptus Virtual Machine Cluster

 External Network Switch Cluster

 Internal Network Switch Cluster

Broker Each Site Actor has one or more brokers, who control a portion of the Site’s

resources

Service Manager Manages all aspects of the CF within his or her organizational department, to

include:

 Availability

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 41 ~

 Access

 Control

User Experimenters use the resource delegated by the Service manager to conduct

experiments. For business donors, the user conducts the daily business of his

or her organizational department, such as management, information

technology, marketing, manufacturing, shipping, and customer service

2.6 Assumptions and Dependencies
Please find this section in Software Requirements Specification for Mutualistic Software Services, Version

1.0

 2.6 Assumptions and Dependencies

2.7 Stakeholders
Table 7. Stakeholders

Stakeholder Major Value Attitudes Major Interests Constraints

NITRD MSS helps meet

its objective to

increase GENI

experimental

resources and

bolster the U.S.

Ignite program

Concerns about

sustained funding

for MSS, no matter

how useful; cost

vs. gain in

resources

MSS must be less

than the requisite

“seed” money; MSS

must help meet

NITRD objectives

MSS must show a

proven increase

in GENI donations

NSF Increasing LSN

size meets NITRD

“at-scale”

experimental

requirement

Concern about cost

vs. gain in

resources;

contingent on GENI

leadership

attitudes

MSS cost must be

less than requisite

NSF “seed” money

GENI must

maintain a

philanthropic

public image

GENI PI MSS enables “at-

scale”

experimentation

Relatively small risk

for the reward;

phased

implementation

lowers risk

Gain in resources

must greatly exceed

business/ academic

contributions

MSS

development

should not

hamper

experimentation

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 42 ~

GENI GPO Control

framework

growth ensures

project

continuation

MSS management

may overshadow

GENI development

of other fields

Donor’s interest and

perceived value in

MSS remains high

MSS

management

must not

outweigh GENI

management

GENI

Experimenters

“In the wild”

resource

availability;

allows for realistic

scenarios

Concern about opt-

out policy allowing

donors to pull

resources in mid-

experiment;

experimental

isolation

At-scale

experimentation and

resource variety

None

MSS Developers Job opportunities;

service sharing

and potential for

monetization;

GPL enables code

modification,

open-source

community

support

Concerned

whether version 1

features will

provide enough

value to

gain/retain donors

Creating new

opportunities for

service distribution

based on emerging

research

CFs must deliver

MSS to customers

to keep a low

development

overhead.

Control

Frameworks

Increases CF size;

increases

experimental

value; possibly

increases NSF

funding

Concern about

upkeep of MSS

MSS must need

minimal CF upkeep;

must not make CF

vulnerable to cyber

attack

MSS must not

lose donors due

to poor service

GENI Meta-

Operations

Center

Increases job

security

Concerns about

manning for

additional

workload

Each service must

have its own

maintain its own

support structure

GMOC requires

additional

funding for

additional

workload

GENI Donors Relatively free

services

Concerns about

slowed

computer/Internet;

experiment

isolation

MSS should provide

reasonable value for

the donation

MSS should not

hamper

organizational

operations

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 43 ~

General Public Provides a way to

get involved in

the future of the

Internet; puts

emerging

technologies in

their hands now

Concerns about

increased taxes;

whether increased

funding is better

than current “pay-

for” services.

Whether MSS will

charge money for

services.

MSS should

remain “free” to

the public

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 44 ~

3. System Capabilities, Conditions, and Constraints
Software Requirements Specification for Mutualistic Software Services Version 1.0 lists:

 2. Overall Description

 3. System Features

 4. Functional Requirements

 5. External Interface Requirements

 6. Other Non-functional Requirements

This section addresses the system capabilities, conditions, and constraints necessary to implement the

above with the functional attributes, non-functional attributes, and constraints identified in this

document. The following tables contain the architectural rule, the SRS reference, the solution, the

location where the software resides, the solution maintainer, and the owner who controls the solution.

3.1 Capabilities
Table 8. Software Capabilities

Rule Version
1.0 2.0

Ref. Solution Location Creator Maintainer Owner

CP1 X FE1

CD4

 CF compares MSS-

AFFILIATE to

federation standards

MSS-ORIGIN Developer Developer MSS-CENTER

CP2 X FE4

CD4

 CF compares MSS-

AFFILIATE to

connection standards

MSS-ORIGIN Developer Developer MSS-CENTER

CP3 X X FE3

FE4

CD2

SI2.1

Service interface

describes system

updates and services

MSS-ENTITY Developer Developer MSS-CENTER

CP4 X X FE1

FE2

FE3

FE4

CD4

Authentication Process

authenticates/de-

authenticates MSS-

AFFILIATES

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 45 ~

CP5 X X FE3

FE4

SI1.2

CI3

Encryption/Decryption

process

encrypts/decrypts

data

MSS-ENTITY Developer Developer MSS-CENTER

CP6 X X FE3

FE4

SI1.5

Validation Process

validates transmissions

MSS-ENTITY Developer Developer MSS-CENTER

CP7 X X FR6

FR7

CP1

CP2

CP3

CP4

CP5

CP6

SI1.3

CI3

Service Interface

delivers and receives

service updates and

services

MSS-ENTITY Developer Developer MSS-CENTER

CP8 X X FE5

FE6

CP3

CP4

CS3

CS4

SI1.4

Web interface

describes services

subset

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 46 ~

CP9 X X FE6

SI6.1

SI7.1

SE1

SE2

SE5

SE9

Authentication Process

authenticates a person

MSS-ENTITY Developer Developer MSS-CENTER

CP10 X FE6

CP3

CP5

CP6

CP9

SI2.2

SI2.5

SI7.2

SI7.3

CI3

SE1

SE2

RE1

RE2

NewService interface

uploads new service

MSS-

CENTER

Developer Developer MSS-CENTER

CP11 X X FR3

FR5

CD12

MSS interface

describes users and

donors

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 47 ~

3.2 Conditions
Table 9. Software Conditions

Rule Version
1.0 2.0

Ref. Solution Location Creator Maintainer Owner

CD1 X X SI3.1

SI4.1

SI5.1

SE1

SE2

MSS-ENTITY has a CF

installed

MSS-ENTITY CF MSS-

ENTITY

CF

CD2 X X FR6

FR7

SI1.6

SI2.3

RE1

RE2

File system holds

services

MSS-ENTITY Developer Developer MSS-CENTER

CD3 X X OE7

FE3

FE4

CD1

SI1.7

Services database

holds system updates

and services data

MSS-ENTITY Developer Developer MSS-CENTER

CD4 X X OE7 CF database holds

MSS-ENTITY data

MSS-ENTITY Developer Developer MSS-CENTER

CD5 X X OE7 User database holds

user data

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 48 ~

CD6 X CI1

CI2

SE1

SE2

SE3

SE4

SE5

RE1

RE2

MSS-CENTER receives

emails

MSS-

CENTER

Developer Developer MSS-CENTER

CD7 X CI4

SE1

SE2

SE3

SE4

SE5

RE1

RE2

MSS-CENTER receives

files

MSS-

CENTER

Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 49 ~

CD8 X UD1

UD2

UD3

OE7

CO1

CO2

CO4

FE7

FE8

UI1

UI2

UI3

UI4

UI5

UI6

SI2.4

RE1

RE2

User web interface

accesses GENI and

service information,

including:

 HTML

 File Downloads

MSS-

CENTER

Developer MSS-

DEVELOPER

MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 50 ~

CD9 X UD4

UD5

UD6

UD7

DE4

DE5

DE6

CS3

CS4

RE1

RE2

Administrator web

interface accesses

management

information, including:

 HTML

 File Downloads

MSS-

CENTER

Developer MSS-

DEVELOPER

MSS-CENTER

CD10 X X AS1

AS2

AS3

AS4

SI1.11

 MSS interface

connects many MSS-

USERS to many MSS-

ENTITIES and MSS-

RESOURCES

MSS-ENTITY Developer

CF

CF CF

CD11 X X AS4

SI1.8

SI1.9

SI1.9.1

SI1.10

SI1.11

CI3

CF interface sends

heartbeats to MSS-

ORIGIN

MSS-ENTITY Developer

CF

CF CF

CD12 X X AS4

SI1.8

CF interface receives

heartbeats from MSS-

AFFILIATE

MSS-ORIGIN Developer

CF

CF CF

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 51 ~

CD13 X X AS4

FR4

CD8

SE4

SE8

CF interface encodes

heartbeats to MSS-

ORIGIN

MSS-

AFFILIATE

Developer

CF

CF CF

CD14 X AS4

FR4

CD8

SI1.12

CI3

MSS interface decodes

heartbeats from MSS-

AFFILIATE

MSS-ORIGIN Developer

CF

CF CF

CD15 X X FR1

FR2

CP5

IN1

IN2

Database holds user

and donor data

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 52 ~

3.3 Constraints
Table 10. Software Constraints

Rule Version
1.0 2.0

Ref. Solution Location Creator Maintainer Owner

CS1 X X OE1

OE5

OE6

CO3

SE4

SE5

SE6

SE7

SE9

FL1

FL2

FL3

MSS must operate on

Linux platforms

initially and port to

several types of

hardware platforms

later

MSS-ENTITY Developer Developer MSS-CENTER

CS2 X X OE2

OE6

CO3

MSS libraries must

operate on Unix and

Linux platforms

initially and Windows

platforms later

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 53 ~

CS3 X X OE3

CO1

CO2

CO4

UI1

UI2

UI3

UI4

UI5

UI6

MSS web interfaces

must display correctly

on major web

browsers

MSS-ENTITY Developer Developer MSS-CENTER

CS4 X X OE4

CO1

CO2

CO4

UI1

UI2

UI3

UI4

UI5

UI6

SE1

SE2

MSS web interfaces

must display in

English, with the

ability to add other

languages later

MSS-ENTITY Developer Developer MSS-CENTER

CS5 X OE5

SE1

SE2

MSS must verify

donor location data

to ensure US location

MSS-ENTITY Developer Developer MSS-CENTER

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 54 ~

CS6 X SI1.1 MSS-CENTER sets

MSS standards

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 55 ~

4. System Characteristics

4.1 Autonomy
The System shall:

 Not require MSS-CENTER interaction to use existing parent services.

 Be separable from its parent node without incurring interruption of current services

4.2 Integrability
The System shall:

 Install on a CF with no modification to the CF, excepting the remote server. For instance:

o ORCA only requires a MSS scripts and configuration file adjustments using commonly

installed software, such as Apache, MySQL, and PHP.

4.3 Extensibility
The System shall:

 Easily add child nodes and resources, for instance:

o An administrator adds a child CF by inserting the child’s IP, port, encryption key, or other

identity information into a file.

4.4 Portability
The System shall:

 (Version 1.0 and 2.0) Operate on Linux

 (Version 2.0) Operate on Unix, and Windows OS

 Operate on servers

4.5 Usability
The System shall:

 Be geared towards users in a non-technical field, such as clerical.

 Be geared towards administrators in a non-technical field, for instance:

o MSS will offer helpful instructions without technical jargon.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 56 ~

4.6 Securability
The System shall:

 (Version 1.0 and 2.0) At a minimum, require a Unique user name and password for login

 (Version 2.0) Provide an option for elevating secure access for different user groups, for

instance:

o User – Unique user name and password for login

o Service Manager – add Captcha login

o Owner/Administrator – add Common Access Card login

o This option may itself be a service

4.7 Credibility
The System shall:

 Provide a means to verify the service as a MSS service, for instance:

o list a MD5 hash value

o Provide a MSS signature

 Easily connect to a parent sponsor, or change to a new parent sponsor

4.8 Interoperability
The System shall:

 Easily exchange information between parent and child sponsors, for instance:

o MSS parent services are queriable and downloadable through a web browser

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 57 ~

5. Architectural Plan
MSS relies on the notion that experimenters use the GENI architecture to develop at least some unique

services that other organizations cannot offer. In fact, other experimenters, developers, and users find

these services valuable enough to donate their resources to the experimenters in exchange for these

services. With more resources available, more experimenters can create more services, and the

mutualistic cycle continues.

Version 1.0 provides a skeleton architecture in preparation for Version 2.0 by creating a service

advertisement and delivery system between two MSS-AFFILIATES that administrators can use to

download entire subsets of services, and that resource users can use to query and download individual

services. MSS checks for the heartbeats sent to the MSS-ORIGIN before allowing administrators and

users to download services onto the actor. The following figure depicts the hierarchical relationships

between the entities.

MSS-ORIGIN (node 1)

^ │

 Heartbeats└── MSS-AFFILIATE (node 2)

^ ├── Administrator

 Heartbeats└── ├─────── MSS-AFFILIATE (node 3)

 │ ├── Administrator

 │ ├── MSS-RESOURCE (physical)

 │ │ └── User

 │ └── MSS-RESOURCE (virtual)

 │ └── User

 ├── MSS-RESOURCE (physical)

 │ └── User

 └── MSS-RESOURCE (virtual)

 └── User

In Version 2.0, this architecture combines MSS Version 1 & 2 software requirements. It provides a

means for the MSS-ORIGINS to plug into the MSS-CENTER and receive the services that MSS-

DEVELOPERS upload and maintain. An MSS-ORIGIN (node 1) then advertises the applicable subset of

services, and MSS-AFFILIATES (nodes 2 & 3) may choose all, or a subset of its parent’s services. At each

node, users can download individual services on to authorized MSS-RESOURCES.

In order to receive the services in Version 1.0 and 2.0, donors simply host a CF and dedicate a portion of

their resources for GENI experimentation. After donors advertise their resources as available by sending

heartbeats to its MSS-ORIGIN, it may download services from its parent MSS-AFFILIATE.

The hardware footprint of the system depends entirely on how many child CFs the parent owns. MSS

Version 2.0 may look like this:

 MSS-CENTER will require a separate server or servers for each MSS component

 MSS-ORIGIN/AFFILIATES will require several servers: one to hold MSS, one to hold services, and

several for its GENI CF

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 58 ~

 MSS-AFFILIATES, at the lowest level, will only require a portion of one server, workstation, or

laptop and serve as its own resource.

 MSS-RESOURCE, at the lowest level, will only require a portion of one server, workstation, or

laptop.

“MSS-AFFILIATES, at the lowest level…” (above) forms a special case in which all software components

reside on one server. To meet this goal, the following section describes an architecture that resides on

one server, and that conforms to MSS-CHILD requirements.

5.1 Remote Server Model
According to Software Requirements Specification for Mutualistic Software Services Version 1.0, a MSS-

AFFILIATE must:

 [Maintain a] Constant connection to the Internet, through a Cable Modem, Direct Service Line,

or other network connection

 [Be a] A computer resource, provisioned according to CF standards.

This means that a MSS-AFFILIATE may only have a single internet connection and must reside on a single

computer, which is not how one sets up a typical CF.

Normally, a CF resides on several computers, with one head node and several worker nodes. The CF

may have several IP addresses, or it might have only one IP address and use a separate Network Address

Translation (NAT) server to shuffle traffic between the public address space and a private address space

where the CF resides. In a canonical ORCA installation, a CF must have at least two computers or several

IP addresses to run all of the required software components [13], which violates the SRS minimum

hardware interface requirements.

This is not an easy problem to solve because the virtualization software (e.g., Xen) requires direct access

to the computer kernel to run a hypervisor, and the virtualization management software (e.g.,

Eucalyptus) requires direct access to the networking tables (e.g., iptables) to allocate public or pseudo-

public IP addresses using Dynamic Host Control Protocol (DHCP). Therefore, one cannot use NAT on the

hypervisor, and one cannot run Eucalyptus on a virtual machine because the Eucalyptus DHCP server

would hand out addresses to other computers on its network that are not Eucalyptus Instances.

The remote server model creates an unexploited solution (at least in the author’s research) that uses a

virtual NAT server to control the network connections, shields the outside network from the Eucalyptus

DHCP server, and leaves the Eucalyptus software to control virtualization on the hypervisor. Appendix B

contains a component diagram that illustrates how one might implement a remote server to act as a

MSS-AFFILIATE.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 59 ~

5.2 Context Diagrams and Data Model
Appendix B contains two context diagrams and one data model. The context diagrams CD-1 and CD-2

represent the external connections, and the data flow model DM-1 represents the generation and flow

of data for each MSS entity in version 1.0.

5.2.1 MSS-CENTER

 (Version 2.0) Hosts all GENI CFs to utilize their heartbeat functionalities

 (Version 2.0) Receives heartbeats, service information requests, and service requests from its

child CFs

 (Version 2.0) Delivers service information and service requests to its child CFs

 (Version 2.0) Delivers service content to resource users and administrators

5.2.2 MSS-ORIGIN

 Develops and maintains a GENI CF

 Has one or more MSS-AFFILIATES

 Receives heartbeats from its MSS-AFFILIATES

 (Version 2.0) Receives service information requests and service requests from its MSS-

AFFILIATES

 (Version 2.0) Delivers service information and service requests to its MSS-AFFILIATES

5.2.3 MSS-AFFILIATE

 Hosts a GENI CF and maintains resources

 Delivers heartbeats to its MSS-ORIGIN

 Receives service information requests, and service requests from its child MSS-AFFILIATES

 Delivers service information and service requests to its child MSS-AFFILIATES

5.2.4 MSS-RESOURCE

 Authorized by an MSS-ENTITY to receive services, make service information requests, and

receive service information

 Has authorized MSS-USERS

5.2.5 MSS-USER

 Authorized to use at least one MSS-RESOURCE

 Requests service information and services from his or her MSS-RESOURCE to his or her MSS-

ENTITY

 Receives service information and services from his or her MSS-RESOURCE to his or her MSS-

ENTITY

 (Version 2.0) Requests service content from MSS-CENTER

 (Version 2.0) Receives service content from MSS-CENTER

5.2.5 MSS-DEVELOPER

 Usually a GENI experimenter

 Creates MSS services

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 60 ~

 (Version 2.0) Delivers service information, service content, and services to MSS-CENTER

 Requests resources from MSS-AFFILIATES for experimentation

5.3 Component Model
Appendix B contains one component diagram. The component diagram CM-1 represents the external

connections, and the data flow model DM-1 represents the generation and flow of data for each MSS-

ENTITY.

5.3.1 Databases

5.3.1.1 Service Data

 Holds the subset of service attribute data of its MSS-ENTITY

5.3.1.2 CF Data

 Holds the MSS-ENTITY data for itself. For instance, ORCA uses database orca

5.3.1.3 User Data

 Holds the authorized user’s data for itself and its child MSS-AFFILIATES

5.3.2 Components

5.3.2.1 CF

 MSS-ORIGIN presents an interface to its children to receive heartbeats

 MSS-AFFILIATES deliver heartbeats to its MSS-ORIGIN

 Provides a CF interface with a list of current donors. For instance, ORCA provides the ORCA

Actor Registry [14]

 Provides a list of available resources to GENI experimenters and users

 Enables GENI experimenters and users to request resources

5.3.2.2 User Interface

 Uses the Authentication process to verify actor and user requests

 Receives a list of MSS-ENTITY resources from the CF

 Receives user service information and service requests

 Provides service delivery information to the Service Interface

 Triggers the Service Interface to deliver services

 Checks for heartbeats on the CF interface

 Triggers the Service Interface to download services

5.3.2.3 Service Interface

 Receives a service information request from the User Interface

 Receives a service download request from the User Interface

 Uses the Encryption process to encrypt services

 Uses the Decryption process to decrypt services

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 61 ~

 Uses the Validation process to validate services

 Receives services from parent MSS-ENTITY

 Delivers services to child MSS-AFFILIATES

5.3.2.4 User Web Site

 (Version 2.0) Delivers service content to service users

 (Version 2.0) Enables MSS-CENTER/MSS-DEVELOPERS to add service content

 (Version 2.0) Delivers GENI information as required by MSS-CENTER

 (Version 2.0) Enables users to email MSS-CENTER/MSS-DEVELOPERS

5.3.2.5 Administrator Web Site

 (Version 2.0) Delivers administrative content to MSS administrators

 (Version 2.0) Allows MSS-CENTER/MSS-DEVELOPERS to add administrative content

 (Version 2.0) Delivers GENI information as required by MSS-CENTER

 (Version 2.0) Enables users to email MSS-CENTER/MSS-DEVELOPERS

5.3.2.6 Developer Uploads

 (Version 2.0) Allows enrolled MSS-DEVELOPERS to add services

 (Version 2.0) Allows enrolled MSS-DEVELOPERS to add service descriptions

 (Version 2.0) Enables MSS-CENTER to approve services

 (Version 2.0) Enables MSS-CENTER to approve service descriptions

5.3.3 Service Repository

5.3.3.1 File System

 Holds MSS services

 (Version 2.0) Holds all MSS services for MSS-CENTER

 Holds a subset of parent services, to include the entire subset, for its MSS-AFFILIATES

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 62 ~

6. Architecture Trade-off Analysis Method (ATAM)

6.1 Purpose
Software Architecture in Practice (2003) explains that the ATAM “… reveals how well an architecture

satisfies particular quality goals, and (because it recognizes that architectural decisions tend to affect

more than one quality attribute) it provides insight into how quality goals interact—that is, how they

trade off” [1]. To this end, this section evaluates MSS in order to verify the architectural decisions that

make up the MSS architecture.

6.2 Main Architectural Drivers
From 2.3 Non-functional Attributes

The System shall have:

 Portability

 Autonomy

 Securability

 Credibility

 Integrability

 Extensibility

 Interoperability

 Usability

6.3 Business Goals
 MSS-DEVELOPERS can advertise services

 GENI CFs can exchange services for a portion of a resource owner’s resources

 An individual member of the public can donate his or her resources in exchange for services

 GENI CFs grow as a result of exchanging services for resources

 A break in heartbeats will not affect the operation of current services

 Decentralized management to reduce MSS-CENTER operational costs

6.4 Major Stakeholders
Mutualistic Software Services Software Requirements Specification, Version 1.0 lists:

 2.2 User Classes and Characteristics

Favored User Classes:

 Resource donors

 CFs

 Developers

 GENI Project Office (GPO)

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 63 ~

6.5 Architectural Approaches
MSS:

 separates databases according to the data held

 requires that a MSS-AFFILIATE send MSS-ORIGIN heartbeats to download new services

 requires that only authorized users on authorized MSS-AFFILIATES and MSS-RESOURCES can

download new services

 CF Interface:

o provides the CF Interface with a list of donors [14]

o provides the User Interface with a list of currently connected MSS-ENTITIES

 User Interface:

o authenticates MSS-ENTITIES and users, and validates service requests

o requests service information and services from its parent

o validates donation status from its MSS-AFFILIATE and its children

o delivers service information to its children

o triggers the Service Interface service transmission and reception

 Service Interface:

o transmits and receives services

o encrypts and decrypts services for transmission

o validates whether services are successfully delivered or received

6.6 Utility Tree
Table 11. Utility Tree

Quality

Attribute

Attribute

Refinement

Case Scenario Rating
(Importance,

Difficulty)

Portability OS Change 1.

Best:

Worst:

A donor installs MSS on a new Linux OS distribution
with the ORCA control framework. This OS has a
newer kernel than the old OS.

(H,M)

MSS works with the new OS

MSS requires older libraries than the OS supports

CF Change 2.

Best:

Worst:

A donor installs MSS on a Unix OS with the
protoGENI control framework. The CF is compatible
with Unix, but the CF does not use PHP, on which
the MSS interface relies.

(H,M)

PHP interpreter and libraries are available from the
Unix package manager, such as aptitude.

The administrator must install the PHP interpreter
and appropriate libraries from the PHP repository.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 64 ~

Resource 3.

Best:

Worst:

A donor installs MSS resources on a virtual machine.

(H,L)

MSS services work on the virtual machine.

MSS services will not work on the virtual machine.

Autonomy Service

Delivery

4.

Best:

Worst:

A user requests a new service from its parent MSS-
ENTITY, but the MSS-ENTITY is not sending
heartbeats to MSS-ORIGIN.

(H,H)

The MSS-ENTITY does not deliver the new service.

The MSS-ENTITY does deliver the new service.

5.

Best:

Worst:

A user requests a currently owned service from its
parent MSS-ENTITY that is sending heartbeats.

(H,H)

The parent CF does deliver the service.

The parent CF does not allow the service download.

6.

Best:

Worst:

A MSS-RESOURCE requests a service from its parent
MSS-ENTITY, but the MSS-ENTITY is not sending
heartbeats.

(H,H)

The CF does not deliver the service to the resource.

The CF does deliver the service to the resource.

MSS-ENTITY

Rules

7.

Best:

Worst:

A MSS-ENTITY has more stringent donor rules than
its parent. Its MSS-AFFILIATES are unhappy with the
strict rules.

(H,M)

Another MSS-ENTITY advertises donor rules that are
in keeping with this MSS-AFFILIATE. The child
switches parents by contacting another MSS-ENTITY,
providing MSS-ENTITY, MSS-RESOURCE, and MSS-
USER data, and sending heartbeats to MSS-ORIGIN.

The children of the MSS-ENITITY with strict donor
rules remove their resources permanently from
GENI.

8. A MSS-ENTITY has less stringent donor rules than its
parent.

(M,L)

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 65 ~

Best: The resource donors enjoy the less stringent rules

and the MSS-ENTITY maintains the hardware
necessary to support the increase in donors.

Worst: This attracts more donors than the MSS-ENTITY can
adequately serve. The donors permanently remove
their resources from GENI

Securability

Service

Encryption

9.

Best:

Worst:

A MSS-ENTITY stops using service encryption to
deliver services. This allows hackers to “pluck” the
services from the Internet during transmission.

(H,L)

The parent of the MSS-ENTITY starts using
encryption keys, and once again starts encrypting
service transmissions.

Several MSS-ENTITIES stop encrypting services, and
the services are available to a large number of non-
donating resource owners, which devalues resource
donation in exchange for services because most of
these services are now free. Donations dwindle to a
point where MSS loses usefulness.

Service Fraud 10.

Best:

Worst:

A donor connects to a CF and obeys all rules, except
he or she gives GENI services away to others who
are not donating.

(H,H)

The parent notices a large number of downloads by
the donor, and enforces MSS rules that require
service donations for services.

The parent does not notice the increased downloads
from the offending donor, and the services are
available to a large number of non-donating
resource owners, which devalues resource donation
in exchange for services because most of these
services are now free. Donations dwindle to a point
where MSS loses usefulness.

Donation

Fraud

11.

Best:

A donor connects to a CF only long enough to
download services and then intentionally stops
sharing resources with the CF. Once a week, this
same donor connects again, downloads new
services, and disconnects from the parent CF.

(H,H)

The MSS-PARENT keeps a history of donor
connection times. The MSS-PARENT rules are strict

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 66 ~

Worst:

enough that the donor cannot download more new
services until the donor meets the resource
donation threshold.

The parent does not notice the connection history of
the offending donor, and too few resources are
available to experimenters than MSS maintenance is
worth.

MSS-ENTITY

Encryption

12.

Best:

Worst:

A branch of MSS-ENTITIES uses the same encryption
keys for its MSS-AFFILIATES.

(H,L)

The parent at the highest point in the branch starts
changing encryption keys after a specified time,
which requires its children down the chain to follow
suit out of necessity.

One MSS-ENTITY is hacked, which leaves all of the
CFs in the branch vulnerable to attack.

Credibility

CF Fraud 13.

Best:

Worst:

A donor connects to a disreputable parent CF, and
user identities, encryption keys, and other
information are stolen.

(H,M)

Encryption keys are replaced.

User identity information containing sensitive
personally identifiable information is in criminal
hands.

Poor Service

Operation

14.

Best:

Worst:

The service does not perform as the developer
described.

(M,M)

Users voice their displeasure on the User Web Site,
and the developer responds by enhancing the
service operation or describing it more accurately.

Poor service operation is common throughout MSS,
which drives users away from donating resources.

Poor Service

Descriptions

15.

Best:

Worst:

The service does not have the functionality that the
service description provides

(M,M)

Users voice their displeasure on the User Web Site,
and the developer responds by enhancing the
service operation or describing it more accurately.

Poor service descriptions are common throughout

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 67 ~

MSS, which drives users away from donating
resources.

Poor Service

Instructions

16.

Best:

Worst:

The service does not have clear, accurate directions
for service use, or is missing directions.

(M,M)

Users voice their displeasure on the User Web Site,
and the developer responds by enhancing the
service operation or describing it more accurately.

Poor service instructions are common throughout
MSS, which drives users away from donating
resources.

Integrability

CF Versions 17.

Best:

Worst:

A new CF version comes out, and MSS must work
with both versions.

(H,H)

MSS requires no change to work with the new
version, or the changes are minimal because MSS is
developed with integrability in mind.
MSS requires significant changes to work with each
version of every CF, and the lack of “plug-n-play”
functionality overburdens MSS developers

Database

type

18.

Best:

Worst:

CFs choose to use a different database than the
design prescribes. Some database queries do not
work.

(L,M)

The database uses similar statements to the
intended database, and so requires little work to
integrate.

Each CF decides to use different databases with
dissimilar statements, and so developers must tailor
software commands to each database type.

CF Interface

Compatibility

19.

Best:

Worst:

A donor decides to change CFs without changing
MSS.

(H,M)

The CF Interface requires no change to work with
the new CF.

The CF interface has significant compatibility
problems.

Service

Interface

20.

Database version changes format of its query
structure.

(L,L)

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 68 ~

Compatibility Best:

Worst:

The Service Interface requires little work to re-write
database queries.

The Service Interface database queries require
complete re-work.

Extensibility Parent Nodes 21.

Best:

Worst:

MSS-ENTITY has poor service because it does not
have the hardware to support all of its children.

(H,L)

Resource donors easily switch to a new MSS-ENTITY
that perhaps the current MSS-ENTITY recommends.

MSS-ENTITY does not acquire the hardware, nor
does the donor switch. Service is so poor that
donors leave MSS.

Tree

Balancing

22.

Best:

Worst:

Too many child nodes create a long tree branch
from MSS-CENTER, which slows down cascading
service delivery.

(H,M)

This MSS branch re-links itself to balance the sub-
tree, and services flow quickly.

MSS-ENTITIES continue to ignore sub-tree lengths,
and service delivery slows to a point that donors
stop donating resources.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 69 ~

7. Cost Benefit Analysis Method (CBAM)
Len Bass et al., summarize the purpose of the CBAM in Software Architecture in Practice (2003):

The CBAM is an iterative elicitation process combined with a decision analysis framework. It

incorporates scenarios to represent the various quality attributes. The stakeholders explore the

decision space by eliciting utility-response curves to understand how the system’s utility varies

with changing attributes. The consensus basis of the method allows for active discussion and

clarification amongst the stakeholders. The traceability of the design decision permits updating

and continuous improvement of the design process over time [1].

The MSS CBAM meets this goal by creating a utility response curve for each case in the Utility Tree rated

(H, H), (H, M), or (M, H). These cases are ordered according to their:

 Utility response curves and ratings

 The architectural strategy to combat the negative effects of the worst-case scenarios

 The cost of implementing the strategy

 List potential risks that the strategy may not mitigate

7.1 Utility Response Curves

7.1.1 Autonomy vs. Service Delivery
Table 12. Autonomy vs. Service Delivery

Service

Delivery

(H,H)

4.

Best:

Worst:

A user requests a new service from its parent MSS-
ENTITY, but the parent CF is not sending heartbeats
to MSS-ORIGIN.

A
u

to
n

o
m

y

Service Delivery

The MSS-ENTITY does not deliver the new service.

The user can download the new service, even
though the MSS-ENTITY is not sending heartbeats.

5.

Best:

Worst:

A user requests a currently owned service from its
parent MSS-ENTITY, but its parent MSS-ENTITY
does not have a parent sponsor.

The parent MSS-ENTITY delivers the service
because it is sending heartbeats.

The parent CF does not allow the service download,
even though it is sending heartbeats.

6.

Best:

A user requests a currently owned service from its
parent MSS-ENTITY, but the MSS-ENTITY is not
sending heartbeats to MSS-ORIGIN.

The MSS-ENTITY does not deliver the service to the

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 70 ~

Worst:

resource.

The CF does deliver the service to the resource.

Strategy /

Cost

1. Strictly adhere to the MSS architecture, in which
heartbeats must go to MSS-ORIGIN.

LOW – Ensure developers

adhere to the MSS

Architecture

2. Strictly adhere to the MSS architecture ,in which
the MSS-ENTITY must be enrolled in the ENTITY
database

LOW – Ensure developers

adhere to the MSS

Architecture

3. Strictly adhere to the MSS architecture, in which
the user must be enrolled in User database

LOW – Ensure developers

adhere to the MSS

Architecture

7.1.2 Integrability vs. User Interface Compatibility
Table 13. Integrability vs. User Interface Compatibility

User

Interface

Compatibility

(H,M)

19.

Best:

Worst:

A donor decides to change CFs without changing
MSS.

In
te

g
ra

b
ili

ty
ADS Interface Comapatability

The MSS Interface requires no change to work
with the new CF.

The MSS interface has significant compatibility
problems.

Strategy /

Cost

1. Use the same software as the CF, which is
generally MySQL, PHP, and BASH scripts.

LOW – This approach fits with

the architectural model

2. Use the same software libraries as the CF. The
CFs already have authentication, decryption, and
validation processes in place, and so using these
causes as few compatibility problems as
possible.

LOW – This approach fits with

the architectural model

7.1.3 Credibility vs. CF Fraud
Table 14. Credibility vs. CF Fraud

CF Fraud

(H,M)

13.

Best:

A donor connects to a disreputable parent CF, and
user identities, encryption keys, and other
information are stolen.

C
re

d
ib

ili
ty

CF Fraud

Encryption keys are replaced.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 71 ~

Worst: User identity information containing sensitive
personally identifiable information is in criminal
hands.

Strategy /

Cost

1. Trust Campaign – begin a real-world campaign,
such as on the NSF, GENI, CF, and MSS-CENTER
websites, explaining that a donor should only
attach to a reputable organization. Avoid unknown
parents.

MEDIUM – MSS-CENTER can

add this content to which

other agencies link, but it adds

additional development and

maintenance costs.

2. MSS Instructions have notices and warnings
prominently displayed that warn the donor to only
join a trustworthy MSS parent, such as a university
or respected business.

MEDIUM – MSS-CENTER can

add this content to which

other agencies link, but it adds

additional development and

maintenance costs.

7.1.4 Extensibility vs. Tree Balancing
Table 15. Extensibility vs. Tree Balancing

Tree

Balancing

(H,M)

22.

Best:

Worst:

Too many child nodes create a long tree branch
from MSS-CENTER, which slows down cascading
service delivery.

E
x
te

n
s
ib

ili
ty

Tree Balancing

This MSS branch re-links itself to balance the sub-
tree, and services flow quickly.

MSS-ENTITIES continues to ignore sub-tree lengths,
and service delivery slows to a point that donors
stop donating resources.

Strategy /

Cost

1. Self-balancing binary search tree – In computer
science, a self-balancing (or height-balanced) binary
search tree is any node based binary search tree
that automatically keeps its height (number of
levels below the root) small in the face of arbitrary
item insertions and deletions [12].

HIGH – implementing this

requires MSS-CENTER to know

all of its nodes and MSS-

ENTITY rules at each level.

2. Recommend to MSS-ENTITIES on the Administrator
Web Site to keep balanced branches to the greatest
extent possible to speed service delivery.

MEDIUM – MSS-CENTER can

add this content, to which

other agencies link, but it adds

additional development and

maintenance costs.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 72 ~

7.1.5 Integrability vs. CF Versions
Table 16. Integrability vs. CF Versions

CF

Versions

(H,H)

17.

Best:

Worst:

A new CF version comes out, and MSS must work
with both versions.

In
te

g
ra

b
ili

ty

CF Versions

MSS requires no change to work with the new
version, or the changes are minimal because MSS is
developed with integrability in mind.

MSS requires significant changes to work with each
version of every CF, and the lack of “plug-n-play”
functionality overburdens MSS developers

Strategy /

Cost

1. Use the same software as is loaded on the CF,
which is generally MySQL, PHP, and BASH scripts.

LOW – This approach fits with
the architectural model

2. Use the same software libraries as the CF. The CFs
already have authentication, decryption, and
validation processes in place, and so using these
causes as few compatibility problems as possible.

LOW – This approach fits with
the architectural model

7.1.6 Securability vs. Service Fraud
Table 17. Securability vs. Service Fraud

Service

Fraud

(H,H)

10.

Best:

Worst:

A donor connects to a CF and obeys all rules, except
he or she gives GENI services away to others who
are not donating.

S
e

c
u

ra
b

ili
ty

Service Fraud

The parent notices a large number of downloads by
the donor, and enforces MSS rules that require
service donations for services.

The parent does not notice the increased
downloads from the offending donor, and the
services are available to a large number of non-
donating resource owners, which devalues
resource donation in exchange for services because
most of these services are now free. Donations
dwindle to a point where MSS loses usefulness.

Strategy /

Cost

1. Management – include color coding and other
means to highlight children that download more
than a given amount.

RISK – This strategy may not

mitigate the worst-case

scenario

MEDIUM – The parent CF

needs a needs to know how

many downloads a child has,

to recognize each child (by its

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 73 ~

MAC address, for instance)

and to permanently exclude

the offending child.

2. Add MAC address to MSS-ENTITY database MEDIUM – Adding a MAC

address is not difficult, but

GENI CFs do not currently

require donors to provide a

MAC address. GENI must

approve this unilaterally.

7.1.7 Portability vs. OS Change
Table 18. Portability vs. OS Change

OS Change

(H,M)

1.

Best:

Worst:

A donor installs MSS on a new Linux OS distribution
with the ORCA control framework. This OS has a
newer kernel than the old OS.

P
o

rt
a

b
ili

ty

OS Change

MSS works with the new OS

MSS requires older libraries than the OS supports

Strategy /

Cost

1. MSS Instructions stress using LTS OS distributions
to avoid this problem altogether.

MEDIUM – MSS-CENTER can

add this content to which

other agencies link, but it

adds additional development

and maintenance costs. PHP,

BASH, and MySQL are widely

supported by all Linux

distributions. The best

strategy to combat this is to

avoid “bleeding edge”

distributions, such as beta and

daily build distributions,

which are generally used for

testing and not for enterprise

level deployments.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 74 ~

7.1.8 Portability vs. CF Change
Table 19. Portability vs. CF Change

CF Change

(H,M)

2.

Best:

Worst:

A donor installs MSS on a Unix OS with the
protoGENI control framework. The CF is
compatible with Unix, but the CF does not use PHP,
on which the MSS interface relies.
 P

o
rt

a
b

ili
ty

CF Change

PHP interpreter and libraries are available from the
Unix package manager, such as ports.

The administrator must install the PHP interpreter
and appropriate libraries from the PHP repository.

Strategy /

Cost

1. MSS Instructions stress using LTS OS distributions
to avoid this problem altogether.

MEDIUM – MSS-CENTER can

add this content to which

other agencies link, but it adds

additional development and

maintenance costs. PHP,

BASH, and MySQL are widely

supported by all Unix

distributions. The best

strategy to combat this is to

avoid “bleeding edge”

distributions, such as beta and

daily build distributions, which

are generally used for testing

and not for enterprise level

deployments.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 75 ~

7.1.9 Autonomy vs. MSS-ENTITY Rules
Table 20. Portability vs. CF Change

MSS-

ENTITY

Rules

(H,M)

7.

Best:

Worst:

A MSS-ENTITY has more stringent donor rules than
its parent. The children of the MSS-ENTITY are
unhappy with the strict rules.

A
u

to
n

o
m

y

ENTITY Rules

Another MSS-ENTITY advertises donor rules that
are in keeping with this MSS-AFFILIATE. The child
switches parents by contacting another MSS-
ENTITY, providing MSS-ENTITY data and User data,
and sending heartbeats to the MSS-ORIGIN.

The children of the MSS-ENTITY with strict donor
rules remove their resources permanently from
GENI.

Strategy /

Cost

1. MSS-AFFILIATES can choose whichever MSS-ENTITY
meets their needs or can switch to a different
parent. An MSS-AFFILIATE can also become a
parent MSS-ENTITY. However, it still must obey the
minimum connection, service distribution, and
service delivery requirements of the ultimate
parent, MSS-CENTER.

NONE – This scenario is in

keeping with MSS.

7.1.10 Securability vs. Donation Fraud
Table 21. Securability vs. Donation Fraud

Donation

Fraud

(H,H)

11.

Best:

Worst:

A donor connects to a CF only long enough to
download services and then intentionally stops
sharing resources with the CF. Once a week, this
same donor connects again, downloads new
services, and disconnects from the parent CF.

S
e

c
u

ra
b

ili
ty

Donation Fraud

The MSS-ORIGIN keeps a history of donor
connection times. The MSS-ENTITY rules are strict
enough that the donor cannot download more new
services until the donor meets the resource
donation threshold.

The parent does not notice the connection history
of the offending donor, and too few resources are
available to experimenters than MSS maintenance
is worth.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 76 ~

Strategy /

Cost

1. Management – Each parent MSS-ENTITY decides
the required connection criteria for each child, such
as how many hours of the day the child is actively
donating resources.

NONE – In the MSS

Architecture, the parent MSS-

ENTITY can enforce its own

connection rules. Each parent

in the chain has this ability,

and so an entire branch may

be cut off from new services

until it meets the higher

parent's connection criteria.

7.2 Architectural Strategies
The following strategies are ranked according to its Utility rating

 Adhere to architecture requirement for heartbeats, and MSS-ENTITY and user data

 Use the same software and libraries that are on the CFs

 (Version 2.0) Add to the MSS web sites:

o Trust Campaign – Reputable parent and child information

o The importance of balancing child nodes

o Define service fraud and how to prevent it.

o Using LTS OS distributions

 (Version 2.0) Provide MSS-ENTITIES with MSS-AFFILIATE information highlighting high downloads or

low donation times.

 (Version 2.0) Add MAC address to the ENTITY database.

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 77 ~

8. References
[1] Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd ed.). Boston, MA,

USA: Pearson Education, Inc.

[2] CISE. (November 28, 2011). US Ignite Gigabit Applications Workshop. NSF. Retrieved on November

29, 2011, from: http://www.nsf.gov/cise/usignite/usignite_workshop.jsp

[3] BBN Technologies. (November 2011). About GENI. Global Environment for Network Innovation.

Retrieved on 29 November, 2011, from: http://www.geni.net/?page_id=2

[4] BBN Technologies. (November 2011). News and Events. Global Environment for Network Innovation.

Retrieved on 29 November, 2011, from: http://www.geni.net/

[5] Baldine, I. (June 7, 2011). Possible Eucalyptus Hardware configurations. RENCI. Retrieved on

December 1, 2011, from:

https://code.renci.org/gf/project/networkedclouds/wiki/?pagename=EucaHardwareConfigurati

on

[6] Dell. (2005). Dell PowerEdge 2850 Server. Dell.com. Retrieved on December 2, 2011, from:

http://www.dell.com/downloads/global/products/pedge/en/2850_specs.pdf

[7] Apple. (October 21, 2008). MacBook Pro (15-inch, Late 2008) - Technical Specifications. Apple Inc.

Retrieved on December 2, 2011, from: http://support.apple.com/kb/sp499

[8] RENCI. Open Resource Control Architecture. (August 13, 2011). Renaissance Computing Institute.

Retrieved December 8, 2011, from http://groups.geni.net/geni/wiki/ORCABEN

[9] Citrix. Xen. (2011). Citrix Systems, Inc. Retrieved December 8, 2011, http://xen.org/

[10] Eucalyptus Systems. Eucalyptus. Eucalyptus Systems, Inc. Retrieved December 8, 2011, from

http://www.eucalyptus.com/

[11] RENCI. Eucalyptus/XCat image proxy. (July 25, 2011). Renaissance Computing Institute. Retrieved

December 2, 2011, from:

https://code.renci.org/gf/project/networkedclouds/wiki/?pagename=ImageProxy

[12] Wikipedia (December 7, 2011).Self-balancing binary search tree. Wikipedia.org. Retrieved

December 11, 2011, from: http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

[13] RENCI. (December 5, 2011). Deploying an Authority (Aggregate Manager/AM). Renaissance

Computing Institute. Retrieved on March 28, 2012, from: https://geni-

orca.renci.org/trac/wiki/deploy-am

[14] RENCI. (March 28, 2012). ORCA Remote Actor Registry. Renaissance Computing Institute. Retrieved

on March 28, 2012, from: https://geni.renci.org:12443/registry/actors.jsp

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 78 ~

Appendix A

Data Dictionary
Aggregate – a collection of components that usually comprise a system

Bandwidth - a bit rate measure of available or consumed data communication resources expressed in

Gigabits/second.

CF – Control Framework

Component – a physical computer resource, such as a router, switch, computer, phone, or copy machine

Community – MSS users identified by a GENI control framework

Contributor – an entity that donates a portion of its resources to GENI

Control framework – one of four GENI architectures used to federate computer resources

Donation – Donations include nearly all types of network resources, such as computers, network routers

and switches, cell phones, computer tablets, copy machines, and so on. However, MSS is only

available for computers as of this writing.

Experimenter – one who conducts network research on GENI

Federate – incorporate one’s computer resource into a GENI control framework

File list – hierarchical locations of files on a resource

GENI – Global Environment for Network Innovation

GUI – Graphical User Interface

Hard Disk – Non-volatile storage device for digital media

ISP – Internet Service Provider

Kbps – Kilobytes per second

LAMP – (Linux, Apache, MySQL, and PHP) – this is a common configuration for a database server

LSN – Large-Scale Network. GENI is an example of a large-scale network.

LTS – refers to a Long-Term Service agreement provided by many operating system developers, such as

Ubuntu.

Mbps – Megabytes per second

MSS – Mutualistic Software Services

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 79 ~

MSS-CENTER – refers to the main MSS office, where MSS is developed and distributed to participating

control frameworks.

MSS-AFFILIATE – refers to a control frameworks child relationship with its MSS-ORIGIN control

framework. At a minimum, MSS-AFFILIATE will contain its MSS-ORIGIN control framework and a

subset of its services.

MSS-DEVELOPER – refers to a member of academia or business who submits a service to MSS.

MSS-ORIGIN – refers the control framework developer and maintainer. MSS-ORIGIN falls directly

beneath MSS-CENTER in the hierarchy.

MSS-RESOURCE – a resource without a control framework, such as a physical computer or virtual

machine.

MSS-USER – refers to an authorized user of a MSS-RESOURCE due to his or her working relationship with

a resource owner.

Node – a computer

NSF – National Science Foundation

OS – Operating System

Programmable component – a network resource with a modifiable operational instruction set

RAM – Random Access Memory. For MSS, this refers to the computer’s volatile memory, such as

Dynamic RAM (DRAM).

Real-world user – a private citizen

RENCI – Rennaissance Computing Institute

Resource – a portion or an entire physical computer hardware component. MSS is only concerned with

resources such as laptops, desktops, and computer tablets (such as iPad).

Resource Owner – one who is authorized to donate all or a portion of a resource to GENI

Slice – a collection of one or more aggregates and components

Standard – the minimum hardware and software configuration required to federate into GENI

Traffic – the movement of information across the Internet

UI – User Interface

USB – universal serial bus

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 80 ~

Appendix B

Context Diagrams

MSS-RESOURCES

 - Virtual Resources

 on the Node

 - Physical Resources

Service Request

Service

Resource

Donation

Resource

Request

 MSS-ORIGIN

 NODE 1

 - GENI CF

 - Service Repo Subset

 - MSS

MSS-CENTER

NODE 0

 - All GENI CFs

 - GENI Services Website

 - Full Service Repository

 - MSS

Service

Information

Service

Information

Request

Service

Request
Service

CD-1

Usage

Stats

Service Result

Service Query

Usage Stats

MSS-RESOURCES

 - Virtual Resources

 on the Node

 - Physical Resources

Service Request

Service

Resource

Donation

Resource

Request

 MSS-AFFILIATE

 NODE N

 - GENI CF

 - Service Repo Subset

 - MSS

Service

Information

Service

Information

Request

Service

Request
Service

Usage

Stats

Service Result

Service Query

Usage Stats

 MSS-AFFILIATE

 NODE N+1

 - GENI CF

 - Service Repo Subset

 - MSS

Service

Information

Service

Information

Request

Service

Request
Service

Usage

Stats

MSS-RESOURCES

 - Virtual Resources

 on the Node

 - Physical Resources

Service Request

Service

Resource

Donation

Resource

Request

Service Result

Service Query

Usage Stats

Heartbeats

 Heartbeats

NOTE: Usage statistics

may be reported directly

to MSS-ORIGIN (node 1)

from MSS-AFFILIATES

(node N, N+1)

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 81 ~

CENTER

NODE 0

1

S

U

S

U
S

R

S

R

S

R

S

R

S

R S

R

N

S

R

S

R

S

R

S

U

S

R

S

R

SR

S

R

N
O

D
E
 N

+1

1

S

U

S

U

S

R

S

R

S

RS

U

S

R

S

R

N

S R

S

R

S

R

S

US

R

S

R

S

R

S

R

NODE N+1

N

S

R

S

R

S

R

S

U

S

R

S

R

S

R

S

R

NODE N+1

1

S

U

S

U

S

R

S

RS

R

S

U

S

R

S

R

N

S

R

S

R

S

R

S

U

S R

S

RS

RS

R

N
O

D
E

 N
+

1

N

S

R

S

R

S R

S

U

S

R

S

R

S

R

S

R

N
O

D
E

 N
+
1

1

S

U

S

U

S

R

S

R

S

R

S

U

S R

S

R

N

S

R

S

R

S

R

S

U

S

R

S

R

S

R

S R

NODE N+1

N

S

R

S

R

S

R

S

U

S

R

S

R

S R

S

R
N
O

D
E
 N

+1

1

S

U

S

U

S

R

S

R

S

R

S

U

S

R

S

R

N

S

R

S

R

S

R

S

U
S

R
S

R
S

R
S

R
N

O
D

E
 N

+
1

N

S

R

S

R

S

R

S

U
S

R

S

R

S

R

S

R

NODE N+1

Legend

 S – Service

 U – Usage Stats

 1 – NODE 1

 N - NODE N

CD-2

NOTE: Usage statistics

may be reported directly

to MSS-ORIGIN (node 1)

from MSS-AFFILIATES

(node N, N+1)

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 82 ~

System Overview

M

MSS-RESOURCE

- MSS-USER

- Parent Services

 Subset

Delivers

Heartbeats

1

Connects
{ Connection |

 Authentication |

 Encryption }

Fail

3

1

Delivers

1

M

Service

Information

Services

Installs

MSS-

DEVELOPER

(GENI

Experimenter)

Creates

MSS-

CENTER

Web Site

Service

Content

MaintainsCreates

DonorOwns

Retrieves

M

MSS

Overview

Service

Content

Installs

MSS-

DEVELOPER

(GENI

Experimenter)Operates

Experiments

Informs

Connects

{ Connection |

 Authentication |

 Encryption }

Fail

3

1

MSS-CENTER

- MSS Software

- Full Service

 Repository

MSS-ENTITY

Hierarchy

- GENI CF

- MSS-RESOURCE

 & MSS-USER data

- MSS Software

- Services Subset

SO-1

Heartbeats

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 83 ~

Component Models

MSS-CENTER

Service Data

CF Data
CF

User

Interface

Service

Interface

Authenticate

User Data

MSS-ORIGIN

Service Data

CF Data
CF

User

Interface

Service

Interface

Authenticate

User Data

CM-1

MSS-AFFILIATE

Service Data

CF Data
CF

User

Interface

Service

Interface

Authenticate

User Data

MSS-RESOURCE

Laptops

Servers

Workstations

User

Web

Interface

Admin

Web

Interface

Encrypt

Validate

Decrypt

Encrypt

Validate

Decrypt

Encrypt

Validate

Decrypt

New

Service

Interface

Full Service

Repository

Services

Subset

Services

Subset

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 84 ~

Remote Server Model

REMOTE-SERVER

MSS-AFFILIATE

Service Data

CF Data
CF

User

Interface

Service

Interface

Authenticate

User Data

Encrypt

Validate

DecryptDomain 0

Domain 1

Full Service

Repository

CM-2

 Volume II: Software Architecture for Mutualistic Software Services (MSS) Version 1.0

~ 85 ~

Appendix C

GENI News and Events (2011)
With the GENI project advancing smoothly into Spiral 4, many key projects were highlighted at GEC 12 during the

Experiments Plenary at the twelfth GENI Engineering Conference (GEC12) in Kansas City on November 3, 2011.

Leading researchers presented live demonstrations of their experiments to two hundred ninety five attendees

Experiments built on the unique capabilities of the GENI mesoscale deployment, a prototype distributed virtual

laboratory for exploring future internets, currently spanning over a dozen university campuses and backbone

points of presence across the US. Using GENI’s capabilities of slicing and deep programmability, experimenters

were able to deploy and validate novel services and applications, many of which are not realizable in today’s

internet.

One group of experiments focused on taking advantage of server and cloud resources to provide new and more

efficient capabilities to end users of home networks and mobile devices. Researchers from Georgia Institute of

Technology demonstrated uCap, a tool that works with a specialized home router to permit home users to manage

network usage allocations across family members, applications (browsing, e-mail, video streaming), and devices.

The University of Wisconsin used a suite of chess-playing smart phones to show how computationally intensive

tasks can be offloaded to heterogeneous cloud resources while meeting users’ goals for security and power

efficiency. The Infinity project at the University of Michigan integrates energy-efficient wireless communication

techniques and predictive caching to optimize performance of smart phone applications such as Facebook photo

sharing.

In a collaborative effort with the SC11 SCInet Research Sandbox (SRS), another group of experiment teams

highlighted novel in-network capabilities that build upon GENI’s deeply programmable network resources.

Researchers from Northwestern University showed how advanced programmable networks can shortcut years of

custom engineering to bring ad hoc specialized networks to individuals and organizations. Indiana University gave

attendees a live view of their FlowScale system, which balances multi-gigabit network loads across the campus’

multiple intrusion detection system (IDS) servers, an integral part of the University’s network operations. A

combined team from Indiana University and the University of Delaware used their eXtensible Session Protocol

(XSP) to boost performance by seamlessly connecting GENI-enabled resources at the network edge to core routers

running a high-performance transfer protocol. Clemson University researchers showed off their Steroid OpenFlow

Service, transparently tuning network performance to increase end-to-end TCP transfer rates by two orders of

magnitude.

Finally, a team led by Rutgers WINLAB showed how they are using the GENI mesoscale deployment to deploy, test,

and validate their MobilityFirst architecture. MobilityFirst is sponsored by the National Science Foundation under

its Future Internet Architecture program. Using new protocols and design paradigms, MobilityFirst is developing a

novel architecture for a future internet where mobility is the norm, with dynamic host and network mobility at

scale. Two key MobilityFirst capabilities, Storage Aware Routing and the Global Name Resolution Service, were

demonstrated with wired and two different wireless connectivity modalities across a nationwide GENI slice

covering eight campuses, two national network backbones, and nine backbone points of presence.

Watch GEC12 Demonstration Videos

Calendar of upcoming GECs

http://www.geni.net/?p=2089
http://www.geni.net/?page_id=157

 Software Design for Mutualistic Software Services (MSS) Version 1.0

Volume III

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 87 ~

Software Design for

Mutualistic Software

Services (MSS)

Version 1.0

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 88 ~

1. Introduction
The software design for Mutualistic Software Services incorporates key features identified in the

Software Requirements Specification for Mutualistic Software Services (MSS) Version 1.0 and the

Software Architecture for Mutualistic Software Services (MSS) Version 1.0. The primary goal addressed

by these documents is to create a means by which the GENI Open Resource Control Architecture (ORCA)

control framework (CF) users, such as developers, experimenters, and researchers, can share and track

software services for use within ORCA.

The concept of sharing services in exchange for resources is hardly new. For example, Amazon and the
Apple App Store have a centralized delivery system in which customers exchange resources (money) for
services (applications and products). In addition, peer-to-peer networks such as LimeWire and Kazaa
use a decentralized delivery system in which members exchange resources (videos and music) for
resources (other videos and music). MSS is different from both of these systems in several ways.

First, MSS uses a hierarchical tree-like distribution, which flows centrally from the root at the GENI
Maintenance Operations Center (GMOC), then branches through each CF origin to its affiliates, and
finally flows to the resources as leaves. The second difference relates to the first in the “middle-mile”
and “last-mile” of service delivery. In the middle-mile, each node in the tree is a client of its parent
server, and so a server is a client of a server, is a client of a server, and so on. This means that each
server must authenticate with the originating CF, and each resource and user must authenticate with his
or her parent CF in order to receive services. In the last-mile, the required number of servers at each
node decreases like the diameter of a tree branch from many servers at the origin to a CF residing on a
single server (e.g., laptop and desktop computers) that a single individual can donate. This single server
model on which all ORCA and MSS systems must reside did not exist before this project. Finally yet
importantly, GENI experimenters “pay” by hosting a CF and sharing resources in the form of virtual
machines, which means GENI’s basic unit of currency is the resource. If one considers the software
products of these experiments to be services, then offering services to the public in exchange for
donated resources provides the payment GENI requires to grow.

This first version of MSS incorporates a lightweight Linux, Apache, MySQL, and PHP (LAMP)

infrastructure that ORCA owners can use to advertise and deliver services. In doing so, it addresses the

fundamental, mutual need between owners and users: owners require vast amounts of resources to

meet their goal of conducting at-scale Internet experiments, and users, experimenters, and researches

require software services to conduct experiments and business. MSS leverages the hierarchical GENI

structure to establish a distributed service delivery system. When a business or university donates a

portion of its resources to GENI as an affiliate, it receives all or part of its sponsor’s services, which

organizational members can then access.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 89 ~

2. Document Outline
This document incorporates the design features in the Software Requirements Specification for

Mutualistic Software Services (MSS) Version 1.0 and the Software Architecture for Mutualistic Software

Services (MSS) Version 1.0. The reader should be thoroughly familiar with these because this document

refers to them often.

This document follows this outline:

1. Introduction

2. Document Outline

3. System Overview

3.1 Functional Attributes

3.2 Non-functional Attributes

3.3 Components

4. System Architecture

4.1 Databases

4.1.1 Services Data

4.1.2 CF Data

4.1.3 Users Data

4.2 Components

 4.2.1 CF Interface

 4.2.2 User Interface

 4.2.3 Services Interface

4.3 Service Repository

 4.3.1 File System

4.4 Remote Server

5. Detailed System Design

6. References

Appendix A: SQL Code
Appendix B: PHP and BASH code
Appendix C: Remote Server Configuration

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 90 ~

3. System Overview
MSS Version 1.0 has three main components: MSS-ORIGIN, MSS-AFFILIATE, and MSS-RESOURCE. The

actual hardware and OS used on the origin and affiliates vary, and each must support service delivery to

its child resources. As of this writing, MSS will only support the remote server as a single-server MSS/CF

installation, as described in the Software Architecture for Mutualistic Software Services (MSS) Version

1.0 section 5.1 Remote Server Model.

MSS-AFFILIATE does not fully support a typical computer in the personal computer domain that a

member of the public might own, or that an employee of a resource owner might use because of IP

address and network interface card requirements. However, later versions of MSS will support these

systems. MSS-AFFILIATE does fully support the current state of CF server clusters and its virtual

machines, to include the remote server. In addition, later versions of MSS will support the Windows OS;

therefore, one must design MSS with common workstation and laptop computers in mind.

3.1 Functional Attributes
The System must:

 Deliver services over an Internet connection

 Provide a management interface for MSS administrators

 Allow the administrator to choose a subset of parent services

 Allow the user to choose a service from the parent sponsor

 Check for heartbeats on MSS-ORIGIN

3.2 Non-functional Attributes
The System shall have:

 Portability

 Autonomy

 Securability

 Credibility

 Integrability

 Extensibility

 Interoperability

 Usability

3.3 Components
Refer to the Software Architecture for Mutualistic Software Services (MSS) Version 1.0 section 5.3

Component Model for a complete listing of MSS components.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 91 ~

4. System Architecture
The System Architecture is based on the Software Architecture for Mutualistic Software Services (MSS)

Version 1.0 section 5.3 Component Model Version 1.0 components. The following sections link the

architectural requirement with the function or interface required to demonstrate adherence to the

architectural strategy. Components are listed in font Courier New, with functions or classes listed in

lower case and with parentheses like so, courier_new(). Components, functions, or classes in green

already exist, such as orca.sql.

4.1 Databases

4.1.1 Services Data

 Holds the subset of service attribute data of its MSS-ENTITY

o connect_Services

o Services.sql[Diagram DB-1 in Appendix A depicts Services.sql]

 Attributes

 attribute_ID

 attribute

 description

 parent_ID

 Attributes_have_Services

 Attributes_attribute_ID

 Services_service_ID

 Services

 service_ID

 name

 filename

 description

 shasum

 developer

 publisher

4.1.2 CF Data

 Holds the MSS-ENTITY data for itself.

o connect_orca

o orca.sql

 Actors

4.1.3 Users Data

 Holds the authorized user’s data for itself and its child MSS-AFFILIATES (actors)

o connect_Users

o Users.sql [Diagram DB-2 in Appendix A depicts Users.sql]

 Actor

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 92 ~

 guid

 name

 ip

 port

 private_key_loc

 mss_user

 sponsor

 Actor_has_User

 actor_guid

 user_user_ID

 Services

 service_ID

 totals

 User

 user_ID

 name

 password

 guid

 administrator

 User_has_Services

 User_user_ID

 Services_service_ID

4.2 Components

4.2.1 CF Interface

 MSS-ORIGIN presents an interface to its children to receive heartbeats

o The ORCA Actor Registry

 MSS-AFFILIATES deliver heartbeats to its MSS-ORIGIN

o The ORCA Actor Registry

 Provides a CF interface with a list of current donors.

o The ORCA Actor Registry

o authorized_sponsor()

 Provides a list of available resources to GENI experimenters and users

o The ORCA Actor Registry

 Enables GENI experimenters and users to request resources

o The ORCA Web Portal on each CF

4.2.2 User Interface

 Uses the Authentication process to verify actor and user requests

o System Specific Constants [constants.php]

o authorized_user() [Index.php]

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 93 ~

 Receives a list of MSS-ENTITY resources from the CF

o List Sponsor

 Receives user service information and service requests

o List Users

o List Actors

o Delete Users

o Delete Actors

 Provides service delivery information to the Service Interface

o Add Client

o Add Sponsor

o Add User

 Triggers the Service Interface to deliver services

o Choose Category [for administrators]

o Choose Service

 Checks for heartbeats on the CF interface

o check_heartbeats()

 Triggers the Service Interface to download services

o Assign Users [… to authorized clients]

o authorized_actor()

4.2.3 Service Interface

 Receives a service information request from the User Interface

o List Services

o Delete Services

 Receives a service download request from the User Interface

o Download Services

 Uses the Encryption process to encrypt services

o Secure Shell (SSH)

 ssh_command()

 rsync_command()

 Uses the Decryption process to decrypt services

o Secure Shell (SSH)

 ssh_command()

 rsync_command()

 Uses the Validation process to validate services

o compare_shasum()

 Receives services from parent MSS-ENTITY

o Secure Shell (SSH)

 ssh_command()

 rsync_command()

 Delivers services to child MSS-AFFILIATES

o Secure Shell (SSH)

 ssh_command()

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 94 ~

 rsync_command()

4.3 Service Repository

4.3.1 File System

 Holds MSS services

o service_tree()

o match_attributes() [directory structure must match attributes’ recursive

structure]

 Holds a subset of parent services, to include the entire subset, for its MSS-ENTITY

o Clear the Services DB for a potentially totally different subset of services

 DELETE FROM Attributes

 DELETE FROM Attributes_have_Services

 DELETE FROM Services

o Make sure there is an administrator or no one can log in

 INSERT INTO User […the client’s administrator]

o Add the new Services data

 INSERT INTO Attributes

 INSERT INTO Attributes_have_Services

 INSERT INTO Services

Section 5. Detailed System Design below expands the requirements above.

4.4 Remote Server
The document Software Architecture for Mutualistic Software Services (MSS) Version 1.0, 5.1 Remote

Server Model, identifies the remote server as an essential element to MSS success. This is because it

enables individual members of the public to donate their resources to GENI in exchange for services.

Furthermore, some key components for the remote server are:

 It must reside on a single server

 It must contain all CF programs

 It must incorporate a firewall

In contrast, canonical ORCA [1] installation has at several physical computers. It has one Eucalyptus [2]

head node with the program ImageProxy [3] that hosts virtual machine (VM) images, several Eucalyptus

worker nodes, and an additional computer that acts as a router to control iptables by using Shorewall

[4]. The ORCA cluster administrator uses Shorewall to map the public IP and a static port number to the

ORCA cluster’s web portal, to the Eucalyptus web portal, and to ImageProxy, and Shorewall dynamically

maps the public IP and one of an assigned block of port numbers to a Eucalyptus “Instance.” Eucalyptus

typically uses a Xen or KVM image-based VM as an instance. The ORCA “cloud” centers at the main

Duke University ORCA cluster and includes all other geographically separated ORCA clusters, such as the

one at the University of Fairbanks, Alaska. The following describes a typical ORCA experimenter request

for one instance.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 95 ~

An experimenter opens the ORCA web portal and requests one or more VMs, which are Eucalyptus

instances in this case, from the ORCA “cloud.” ORCA main finds an ORCA cluster with available

resources in the ORCA Actor Registry, and Shorewall performs Name Address Translation (NAT) between

that ORCA web portal’s public IP address and port number. Then ORCA requests one instance from the

Eucalyptus head node, which commands a worker node to instantiate an instance. Upon success, the

worker node assigns a private IP address to the instance’s virtual interface (VIF), 10.10.10.130 for

example, and requests an IP address from DHCP installed on the Eucalyptus head node. The head node

assigns an address, 192.168.1.11 for example, from a pre-defined block of IP addresses, and performs

NAT between 10.10.10.1 and 192.168.1.11. Eucalyptus reports the address 192.168.1.11 to ORCA,

which requests Shorewall perform NAT between 192.168.1.11, the public IP address, and a port number

Shorewall dynamically assigns. ORCA delivers the pubic IP address and port number to the

experimenter’s ORCA web portal, and he or she now can access the instance using Secure Shell (SSH)

from his or her remote location. In addition, ORCA uses a programmable switch to interconnect any

second and subsequent VIFs that the experimenter requests so that the instances may communicate

with each other across virtual local area networks (VLAN). The figure below depicts the canonical ORCA

cluster.

Computer as

a Router

No DHCP

 Public.IP.Address

 ↕
 Shorewall NAT

 ↕
 192.168.0.0/16

Internet192.168.1.1

Public.IP.Address

Eucalyptus -> iptables

DNAT

 192.168.N.X -> 10.10.N.X

SNAT

 10.10.N.X <- 192.168.N.X

Eucalyptus Worker Node 1

Hypervisor (Domain 0)

192.168.2.10

Programmable Switch

for VLANs

Dumb Switch

Eucalyptus Worker Node N

Hypervisor (Domain 0)

192.168.N.10

…

...
Instance 3

Domain 3

10.10.2.132

(192.168.2.13)

Instance N

Domain N

10.10.2.M

(192.168.2.M)

Eucalyptus Head Node

192.168.1.10

ORCA 11080

 canonical-vm-site

 canonical-broker

 Public.IP.Address

Image Proxy 11081

Eucalyptus 8443

Eucalyptus DHCP

 192.168.0.0/16

MSS 12080

Instance 1

Domain 1

10.10.2.130

(192.168.2.11)

Instance 2

Domain 2

10.10.2.131

(192.168.2.12)

...
Instance 3

Domain 3

10.10.N.132

(192.168.N.13)

Instance N

Domain N

10.10.N.M

(192.168.N.M)

Instance 1

Domain 1

10.10.N.130

(192.168.N.11)

Instance 2

Domain 2

10.10.N.131

(192.168.N.12)

...

Virtual

Legend

Physical

Figure 1. Canonical ORCA cluster

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 96 ~

The remote server combines all of the canonical ORCA elements into one computer, by allocating a

small portion of the hard drive using the Logical Volume Manager. For instance, hypervisor uses two

logical volumes, hyper-root and hyper-swap, and Domain 1 uses two logical volumes, router-root and

router-swap, while the Eucalyptus instances use image-based VMs. Furthermore, Xen and KVM allow

one to create VIFs 0 & 1 as an extension of the physical Network Interface Cards (NIC) 0 & 1, and Linux

includes a “dummy” module to make an internal dummy interface. The picture below exhibits these

components.

Internet
Eucalyptus -> iptables

DNAT

 192.168.1.X -> 10.10.1.X

SNAT

 10.10.1.X <- 192.168.1.X

Eucalyptus Head Node

Hypervisor (Domain 0)

192.168.1.100

ORCA 11080

 remote-vm-site

 remote-broker

 Public.IP.Address

Image Proxy 11081

Eucalyptus 8443

Eucalyptus DHCP

 192.168.0.0/16

MSS 12080

Virtual

Legend

Physical

Instance 3

Domain 4

image-based

10.10.1.132

(192.168.1.103)

Instance 4

Domain 5

image-based

10.10.1.133

(192.168.1.104)

Instance 1

Domain 2

image-based

10.10.1.130

(192.168.1.101)

Instance 2

Domain 3

image-based

10.10.1.131

(192.168.1.102)

NIC

1

VIF 1

Public.IP.AddressDomain 1 as

LVM-based

Router

No DHCP

 Public.IP.Address

 ↕
 iptables NAT

 ↕
 192.168.1.0/24

VIF 0

gateway

192.168.1.1

Dummy

Interface

10.10.1.0/24

NIC

0

Figure 2. ORCA Remote Server

One important note is that this setup requires two NICs, but some computers owned by individuals only

have one. The Dell Inspiron 570 mini-tower computer serves as an example, which one can purchase for

$300 as of this writing [5]. Dell includes an option to add a wireless LAN PCIe card, and this computer

has expansion slots to add additional cards [6]. Moreover, many computers have two NICs installed

from the factory. For instance, laptops often have one Ethernet card and one wireless LAN card.

Furthermore, suitable NICs are relatively inexpensive, with prices ranging from less than $10 for a

10/100 Mbps to less than $30 for a 10/100/1000 Mbps Ethernet card at NewEgg.com [7]. However, I

believe one could change the configuration to use only one Ethernet card with a little more

experimentation with the configuration files. Appendix C contains all the configuration file changes

necessary to create the remote server set up.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 97 ~

5. Detailed System Design
The detailed system design lists the sub-interface identified in 4. System Architecture above, with

pseudo-code written for the requirements. In addition, the MSS System only maintains essential files in

the web-facing MSS directory, and so the MSS System is partitioned like so:

[web server root directory]

├── MSS

│ ├── actors.jsp

│ ├── add_client.php

│ ├── add_sponsor.php

│ ├── add_user.php

│ ├── assign_users.php

│ ├── choose_category.php

│ ├── choose_service.php

│ ├── del_actors.php

│ ├── del_services.php

│ ├── del_users.php

│ ├── download_service.php

│ ├── functions_php.php

│ ├── functions_Services.php

│ ├── functions_Shell.php

│ ├── functions_User.php

│ ├── index.php

│ ├── list_actors.php

│ ├── list_services.php

│ ├── list_sponsor.php

│ ├── list_users.php

│ ├── menu.php

│ ├── mssLogo.png

│ ├── style.css

│ └── user_logout.php

└── scripts

 ├── connect_orca.php

 ├── connect_Services.php

 ├── connect_Users.php

 ├── constants.php

 ├── cookie.php

 ├── footer.php

 ├── header.php

 ├── logs

 │ └── rsync

 │ └── [YYYYMMDD]_mss_rsync.log

 ├── sh_check_heartbeats

 ├── sh_rsync_command

 └── sh_ssh_command

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 98 ~

Appendix A contains the SQL Entity-Relationship model for the Services and Users databases and the full

SQL code. Diagram CM-3 in Appendix B depicts the high-level system design for one MSS-ENTITY, which

is a stretched and expanded version of diagram CM-1 in the Software Architecture for Mutualistic

Software Services (MSS) Version 1.0. In addition, Appendix B includes the full PHP code for MSS.

Sub-Interface Function
ALL

INTERFACES
All interfaces must ensure that the user is valid and that a session has begun.

 Start a new session

 The session expires after 20 minutes of inactivity

 Destroy the session upon exit or expiry

 Ensure the user is valid for every page or display an error

 Display a menu relevant to the user’s permissions

add_client Add a new client actor, onto which its LOCAL Administrator may download
services from its sponsor.

 If the user is valid and an administrator, then

 If Submit is pressed, then

 If the variables are not empty, then

 Check the IP format

 Check the Port format

 Check Actor table to see if the Name already

exists

 Else print an error message

 Set Sponsor to “client”

 Give the Client a new GUID

 INSERT name, ip, port, guid, private_key_loc, mss_user,

sponsor into Actor

 Else

 Display Name IP PORT Private_Key_Location MSS_User_Name

from Actor as textboxes

 Else print an error message and go to user_logout

add_sponsor Add a new sponsor actor, if the user is valid and an administrator. Sponsors host a
CF

 If the user is valid and an administrator, then

 If Submit is pressed, then

 If the variables are not empty, then

 Check the Actor table for the GUID

 Check the Actor table for the Name

 Check the IP format

 Check the Port format

 Else print an error message

 INSERT guid, name, ip, port, private_key_loc, mss_user,

sponsor into Actor

 Else

 Display guid, name, ip, port, private_key_loc, mss_user

from Actor as textboxes

 Else print an error message and go to user_logout

add_user Add a new user if the adding user is valid and an administrator. Users can be a
Local Admin, Client Admin, or user

 If the user is valid and an administrator, then

 If Submit is pressed, then

 If variables are not empty, then

 Check the Actor table to see if the name already

exists

 Compare password1 to password2 to check for

typos

 Set the new user to Admin, client, or user

 Else print an error message

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 99 ~

 INSERT name, password, guid, administrator into Actor

 Else

 Display Name Password1 Password2 Local_Administrator

Client_Administrator from User as textboxes

 Else print an error message and go to user_logout

assign_users Administrators can assign a user to an actor. This allows Local or Client
Administrators to add new services to their sponsor actor, and users to download
services from their sponsor onto the approved actor

 If the user is valid and an administrator, then

 If Submit is pressed, then

 For each Actor

 INSERT the checked user into Actor_has_User

 Display a confirmation message

 Else

 For each Actor

 Display GUID Name IP Port Sponsor from Actor as

textboxes

 For each User

 Display Name Administrator from User as

checkboxes

 Else print an error message and go to user_logout

choose_category This is the only way that a Client Administrator can add new services to his or her
Client Sponsor. The user must be a Client Administrator on the parent and a Local
Administrator on the child

 If the user is valid and on an authorized sponsor, then

 If the user is a local or client administrator and sending

heartbeats to MSS-ORIGIN, then ON THE CLIENT

 If Submit is pressed, then

 If the user does not exist [special case: first install]
 INSERT user_ID, name, password, guid,

administrator into User

 Clear the Attributes Attributes_have_Services

and Services tables

 INSERT all Attributes into Attributes

 For each checked Attribute

 Make directories on the client that match

the attribute tree in the System

Constants location

 Rsync the entire directory named

[Attribute]

 INSERT the matching Service

 INSERT the matching

Attributes_have_Services

 Else

 For each Attribute

 Display the Attribute indented by its level

 For each Attributes_have_Services

 Display a checkbox

 Else print an error message

 Else print an error message and go to user_logout

choose_service All users can choose services if they are valid users on an authorized computer
 If the user is valid and on an authorized client, then

 If the Service_ID button is pressed

 If sending MSS-ORIGIN heartbeats

 Display alert for download size

 Go to download_service

 Else

 Display the attribute tree by its level

 For each Attribute

 Display Service_ID as Submit button

 Display the list of matching Services

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 100 ~

 Else print an error message and go to user_logout

constants Allow the administrator to tailor the installation by providing definable Constants.
Separate database names, passwords, and file locations from the PHP web pages.

 MSS_SERVICES directory

 GENI_HEARTBEATS webpage

 GENI_DB for GENI database name

 GENI_DB_USER for GENI database access

 GENI_DB_PASS for GENI database password

 USERS_DB for Users database name

 USERS_DB_USER for Users database access

 USERS_DB_PASS for Users database password

 SERVICES_DB for Services database name

 SERVICES_DB_USER for Services database access

 SERVICES_DB_PASS for Services database password

 MSS_USER that conducts MSS activities on the host only

 MSS_HOME the directory that contains MSS webpages

 MSS_SCRIPTS the directory that contains MSS scripts

del_actors Administrators can delete a client from the sponsor
 If the user is valid and a local administrator, then

 If the Submit button is pressed, then

 DELETE the Actor from Actor_has_User where the checkbox

is checked

 DELETE the Actor from Actor where the checkbox is

checked

 Else

 Display “delete actor” checkbox, name, guid, ip, port,

private_key_loc, mss_user, sponsor from Actor

 Else print an error message and go to user_logout

del_services Administrators can choose to delete services from the sponsor immediately. For
everyone, only delete the service after every user deletes the service to save
bandwidth and download time.

 If the user is valid, then

 If the Submit button is pressed, then

 DELETE the service from User_has_Services where the

“delete my service” checkbox is checked

 Decrement Services Totals

 If this is the last user to own the service, then

 DELETE the service from Services where the

“delete my service” checkbox is checked

 Delete the service from the client’s file system

 If the user is a local administrator, then

 DELETE the service from User_has_Services where

the “delete all service” checkbox is checked

 DELETE the service from Services where the

“delete all service” checkbox is checked

 Delete the service from the client’s file system

 Else

 Display “delete my service” checkbox

 If the user is a local administrator, then

 Display “delete all service” checkbox

 Display Name, Attribute, Filename, description from

view_Attributes_Services

 Else print an error message and go to user_logout

del_users Administrators can delete a user from the sponsor
 If the user is valid and a local administrator, then

 If the Submit button is pressed, then

 DELETE the user from User_has_Services where the

checkbox is checked

 DELETE the user from Actor_has_User where the checkbox

is checked

 DELETE the user from User where the checkbox is checked

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 101 ~

 Else

 Display “delete user” checkbox, user_ID, name, guid,

“local or client” administrator from User

 Else print an error message and go to user_logout

download_service Download the service if all of the choose_service requirements are met, and if the
client and host IP addresses match an authorized actor.

 If the user is valid and on an authorized client, then

 If the host IP exists and the client IP exists in Actors

 Send the service to the client

 Compare the SHA sums of the original to the downloaded

service

 If the shasums do not match

 Delete the downloaded service from the client

 Print an error message

 Else print an error message

 Else print an error message and go to user_logout

index This is the home page for MSS, where authorized users on authorized clients log
in. Administrators can log in from any computer, which also solves the “initial
installation” problem where no users are assigned to any actors.

 If username and password are blank, then

 If Submit button is pressed, then

 If username and password match a user in Users

 valid_user == true

 If the user is a local administrator, then

 authorized_user == true

 Load a list of services into the session

 Display administrator instructions

 If Actor_has_User where Actor.ip == client ip

 authorized_user == true

 Load a list of services into the session

 If user is a client administrator

 Display client administrator instructions

 If user is a ordinary user

 Display user instructions

 Else print an error message and deny access

 Else

 Display username and password as textboxes

 Else print an error message and go to user_logout

list_actors Valid and authorized users may view a list of actors authorized to download from
the sponsor.

 If the user is valid and authorized, then

 Display name, guid, ip, port, private_key_loc, mss_user from

User

 Display “local or client” sponsor based on host IP

 Else print an error message and go to user_logout

list_services Valid and authorized users may view a list of services available on the sponsor
 If the user is valid and authorized, then

 Display service_ID, name, filename, description, shasum,

developer, publisher from Services

 Else print an error message and go to user_logout

list_sponsor Valid and authorized users may view a list of sponsors, such as the ORCA actors
Service Manager, Broker, and Site, that are registered in the GENI database

 If the user is valid and is authorized, then

 Display act_id, act_name, act_guid from GENI_DB.Actors

 Else print an error message and go to user_logout

list_users Valid users and administrators may view a list of users that are registered on the
sponsor

 If the user is valid and an administrator, then

 Display user_ID, name, guid, administrator from User

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 102 ~

 Display “local or client” administrator

 Else print an error message and go to user_logout

menu Display a menu ribbon that changes based on the user type: administrator, client
administrator, user

 If the user is valid and authorized, then

 Display index, list_sponsor, list_services, choose_services

 If the user is a local or client administrator, then

 If the actor is an authorized sponsor, then

 Display choose_category

 If the actor is an administrator, then

 Display list_users, list_actors, add_user,

add_client, add_sponsor

 If the web browser is not text-based

 Display assign_users

 Display del_actors, del_users

 Display del_services, user_logout

 Else print an error message and go to user_logout

user_logout Log the user out of the session when the link “Log Out” is chosen, time expires, or
the user is not valid.

 Close the session write

 Unset the session

 Destroy the cookie

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 103 ~

6. References
[1] RENCI. (December 5, 2011). Deploying an Authority (Aggregate Manager/AM). Renaissance

Computing Institute. Retrieved on March 28, 2012, from: https://geni-

orca.renci.org/trac/wiki/deploy-am

[2] Eucalyptus Systems. Eucalyptus. Eucalyptus Systems, Inc. Retrieved December 8, 2011, from

http://www.eucalyptus.com/

[3] RENCI. Eucalyptus/XCat image proxy. (July 25, 2011). Renaissance Computing Institute. Retrieved

December 2, 2011, from:

https://code.renci.org/gf/project/networkedclouds/wiki/?pagename=ImageProxy

[4] Eastep, Thomas M. (2011). Shorewall: IP Tables Made Easy. Shorewall. Retrieved on April 2, 2012,

from: http://shorewall.net/

[5] Dell. (April 4, 2012). Shopping cart. Dell Store. Retrieved on April 4, 2012 from:

http://configure.us.dell.com/dellstore

[6] Dell. (April 2012). Dell Inspiron 570 Desktop. Dell.com. Retrieved on April 4, 2012 from:

http://www.dell.com/content/products/productdetails.aspx/inspiron-

570?c=us&cs=19&l=en&s=corp&~lt=popup

[7] NewEgg. (April 4, 2012). Network Interface Cards. NewEgg.com. Retrieved on April 4, 2012 from:

http://www.newegg.com/Store/SubCategory.aspx?SubCategory=27&name=Network-Interface-

Cards

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 104 ~

Appendix A

Services Database

Overview

DB-1

SQL Code
 1 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

 2 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;

 3 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';

 4

 5 DROP SCHEMA IF EXISTS `Services` ;

 6 CREATE SCHEMA IF NOT EXISTS `Services` DEFAULT CHARACTER SET utf8 COLLATE

utf8_general_ci ;

 7 USE `Services` ;

 8

 9 -- ---

 10 -- Table `Services`.`Services`

 11 -- ---

 12 DROP TABLE IF EXISTS `Services`.`Services` ;

 13

 14 CREATE TABLE IF NOT EXISTS `Services`.`Services` (

 15 `service_ID` INT(11) NOT NULL ,

 16 `name` VARCHAR(100) NULL DEFAULT NULL ,

 17 `filename` VARCHAR(100) NULL DEFAULT NULL ,

 18 `description` VARCHAR(1000) NULL DEFAULT NULL ,

 19 `shasum` VARCHAR(40) NULL DEFAULT NULL ,

 20 `developer` VARCHAR(100) NULL DEFAULT NULL ,

 21 `publisher` VARCHAR(100) NULL DEFAULT NULL ,

 22 UNIQUE INDEX `Service_ID_UNIQUE` (`service_ID` ASC))

 23 ENGINE = InnoDB

 24 AUTO_INCREMENT = 2

 25 DEFAULT CHARACTER SET = utf8

 26 COLLATE = utf8_general_ci

 27 COMMENT = 'This table holds the MSS Service Repository.';

 28

 29

 30 -- ---

 31 -- Table `Services`.`Attributes`

 32 -- ---

 33 DROP TABLE IF EXISTS `Services`.`Attributes` ;

 34

 35 CREATE TABLE IF NOT EXISTS `Services`.`Attributes` (

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 105 ~

 36 `attribute_ID` INT(11) NOT NULL ,

 37 `attribute` VARCHAR(100) NOT NULL ,

 38 `description` VARCHAR(1000) NOT NULL ,

 39 `parent_ID` INT(11) NULL ,

 40 UNIQUE INDEX `attribute_ID_UNIQUE` (`attribute_ID` ASC) ,

 41 INDEX `parent_ID` (`parent_ID` ASC) ,

 42 CONSTRAINT `parent_ID`

 43 FOREIGN KEY (`parent_ID`)

 44 REFERENCES `Services`.`Attributes` (`attribute_ID`)

 45 ON DELETE CASCADE

 46 ON UPDATE CASCADE)

 47 ENGINE = InnoDB

 48 AUTO_INCREMENT = 10

 49 DEFAULT CHARACTER SET = utf8

 50 COLLATE = utf8_general_ci

 51 COMMENT = 'This table holds the MSS Attribute Repository.';

 52

 53

 54 -- ---

 55 -- Table `Services`.`Attributes_have_Services`

 56 -- ---

 57 DROP TABLE IF EXISTS `Services`.`Attributes_have_Services` ;

 58

 59 CREATE TABLE IF NOT EXISTS `Services`.`Attributes_have_Services` (

 60 `Attributes_attribute_ID` INT(11) NOT NULL ,

 61 `Services_service_ID` INT(11) NOT NULL ,

 62 PRIMARY KEY (`Attributes_attribute_ID`, `Services_service_ID`) ,

 63 INDEX `fk_Attributes_have_Services_Services1` (`Services_service_ID` ASC) ,

 64 CONSTRAINT `fk_Attributes_have_Services_Ads1`

 65 FOREIGN KEY (`Attributes_attribute_ID`)

 66 REFERENCES `Services`.`Attributes` (`attribute_ID`)

 67 ON DELETE NO ACTION

 68 ON UPDATE NO ACTION,

 69 CONSTRAINT `fk_Attributes_have_Services_Services1`

 70 FOREIGN KEY (`Services_service_ID`)

 71 REFERENCES `Services`.`Services` (`service_ID`)

 72 ON DELETE NO ACTION

 73 ON UPDATE NO ACTION)

 74 ENGINE = InnoDB

 75 DEFAULT CHARACTER SET = utf8

 76 COLLATE = utf8_general_ci;

 77

 78

 79 -- ---

 80 -- Placeholder table for view `Services`.`view_Attributes_Services`

 81 -- ---

 82 CREATE TABLE IF NOT EXISTS `Services`.`view_Attributes_Services` (`service_ID`

INT, `name` INT, `filename` INT, `description` INT, `shasum` INT, `developer` INT,

`publisher` INT, `attribute_ID` INT, `attribute` INT);

 83

 84 -- ---

 85 -- View `Services`.`view_Attributes_Services`

 86 -- ---

 87 DROP VIEW IF EXISTS `Services`.`view_Attributes_Services` ;

 88 DROP TABLE IF EXISTS `Services`.`view_Attributes_Services`;

 89 USE `Services`;

 90 CREATE OR REPLACE VIEW `Services`.`view_Attributes_Services` AS

 91 SELECT `Services`.`service_ID`, `Services`.`name`, `Services`.`filename`,

`Services`.`description`, `Services`.`shasum`, `Services`.`developer`,

`Services`.`publisher`, `Attributes`.`attribute_ID`, `Attributes`.`attribute`

 92 FROM `Services`

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 106 ~

 93 INNER JOIN (`Attributes` INNER JOIN `Attributes_have_Services` ON

`Attributes`.`attribute_ID`=`Attributes_have_Services`.`Attributes_attribute_ID`) ON

`Services`.`service_ID`=`Attributes_have_Services`.`Services_service_ID`;

 94 ;

 95

 96

 97 SET SQL_MODE=@OLD_SQL_MODE;

 98 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;

 99 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 107 ~

Users Database

Overview

DB-2

SQL Code
 1 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

 2 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;

 3 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='TRADITIONAL';

 4

 5 DROP SCHEMA IF EXISTS `Users` ;

 6 CREATE SCHEMA IF NOT EXISTS `Users` DEFAULT CHARACTER SET utf8 COLLATE

utf8_general_ci ;

 7 USE `Users` ;

 8

 9 -- ---

 10 -- Table `Users`.`User`

 11 -- ---

 12 DROP TABLE IF EXISTS `Users`.`User` ;

 13

 14 CREATE TABLE IF NOT EXISTS `Users`.`User` (

 15 `user_ID` INT NOT NULL AUTO_INCREMENT ,

 16 `name` VARCHAR(50) NOT NULL ,

 17 `password` VARCHAR(10) NOT NULL ,

 18 `guid` VARCHAR(45) NOT NULL ,

 19 `administrator` TINYINT(1) NOT NULL DEFAULT 0 ,

 20 PRIMARY KEY (`user_ID`) ,

 21 UNIQUE INDEX `user_ID_UNIQUE` (`user_ID` ASC) ,

 22 UNIQUE INDEX `guid_UNIQUE` (`guid` ASC))

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 108 ~

 23 ENGINE = InnoDB

 24 DEFAULT CHARACTER SET = utf8

 25 COLLATE = utf8_general_ci

 26 COMMENT = 'Contains the user GUID, password, name, and ssh_key_location';

 27

 28

 29 -- ---

 30 -- Table `Users`.`Actor`

 31 -- ---

 32 DROP TABLE IF EXISTS `Users`.`Actor` ;

 33

 34 CREATE TABLE IF NOT EXISTS `Users`.`Actor` (

 35 `guid` VARCHAR(45) NOT NULL ,

 36 `name` VARCHAR(45) NOT NULL ,

 37 `ip` VARCHAR(15) NOT NULL ,

 38 `port` INT NOT NULL DEFAULT 22 ,

 39 `private_key_loc` VARCHAR(500) NOT NULL ,

 40 `mss_user` VARCHAR(50) NOT NULL ,

 41 `sponsor` TINYINT(1) NOT NULL DEFAULT 0 ,

 42 PRIMARY KEY (`guid`) ,

 43 UNIQUE INDEX `guid_UNIQUE` (`guid` ASC))

 44 ENGINE = InnoDB

 45 DEFAULT CHARACTER SET = utf8

 46 COLLATE = utf8_general_ci

 47 COMMENT = 'The GENI actor that owns the resource the user is using.';

 48

 49

 50 -- ---

 51 -- Table `Users`.`Services`

 52 -- ---

 53 DROP TABLE IF EXISTS `Users`.`Services` ;

 54

 55 CREATE TABLE IF NOT EXISTS `Users`.`Services` (

 56 `service_ID` INT NOT NULL ,

 57 `totals` INT NULL DEFAULT 0 ,

 58 PRIMARY KEY (`service_ID`))

 59 ENGINE = InnoDB;

 60

 61

 62 -- ---

 63 -- Table `Users`.`User_has_Services`

 64 -- ---

 65 DROP TABLE IF EXISTS `Users`.`User_has_Services` ;

 66

 67 CREATE TABLE IF NOT EXISTS `Users`.`User_has_Services` (

 68 `User_user_ID` INT NOT NULL ,

 69 `Services_service_ID` INT NOT NULL ,

 70 PRIMARY KEY (`User_user_ID`, `Services_service_ID`) ,

 71 INDEX `fk_User_has_Services_Services1` (`Services_service_ID` ASC) ,

 72 CONSTRAINT `fk_User_has_Services_User1`

 73 FOREIGN KEY (`User_user_ID`)

 74 REFERENCES `Users`.`User` (`user_ID`)

 75 ON DELETE NO ACTION

 76 ON UPDATE NO ACTION,

 77 CONSTRAINT `fk_User_has_Services_Services1`

 78 FOREIGN KEY (`Services_service_ID`)

 79 REFERENCES `Users`.`Services` (`service_ID`)

 80 ON DELETE NO ACTION

 81 ON UPDATE NO ACTION)

 82 ENGINE = InnoDB

 83 DEFAULT CHARACTER SET = utf8

 84 COLLATE = utf8_general_ci;

 85

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 109 ~

 86

 87 -- ---

 88 -- Table `Users`.`Actor_has_User`

 89 -- ---

 90 DROP TABLE IF EXISTS `Users`.`Actor_has_User` ;

 91

 92 CREATE TABLE IF NOT EXISTS `Users`.`Actor_has_User` (

 93 `Actor_guid` VARCHAR(45) NOT NULL ,

 94 `User_user_ID` INT NOT NULL ,

 95 PRIMARY KEY (`Actor_guid`, `User_user_ID`) ,

 96 INDEX `fk_Actor_has_User_User1` (`User_user_ID` ASC) ,

 97 CONSTRAINT `fk_Actor_has_User_Entity1`

 98 FOREIGN KEY (`Actor_guid`)

 99 REFERENCES `Users`.`Actor` (`guid`)

100 ON DELETE NO ACTION

101 ON UPDATE NO ACTION,

102 CONSTRAINT `fk_Actor_has_User_User1`

103 FOREIGN KEY (`User_user_ID`)

104 REFERENCES `Users`.`User` (`user_ID`)

105 ON DELETE NO ACTION

106 ON UPDATE NO ACTION)

107 ENGINE = InnoDB

108 DEFAULT CHARACTER SET = utf8

109 COLLATE = utf8_general_ci;

110

111

112

113 SET SQL_MODE=@OLD_SQL_MODE;

114 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;

115 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 110 ~

Appendix B

High-Level System Design

MSS-ENTITY

Service Data

CF Data
CF

User

Interface

Service

Interface

Authenticate

User Data

Encrypt

Validate

Decrypt

Services

Subset

connect_Services

Attributes

 attribute_ID

 attribute

 description

 parent_ID

Attributes_have_Services

 Attributes_attribute_ID

 Services_service_ID

Services

 service_ID

 name

 filename

 description

 shasum

 developer

 publisher

Actors

connect_orca

Actor

 guid

 name

 ip

 port

 private_key_loc

 mss_user

 sponsor

Actor_has_User

 actor_guid

 user_user_ID

Services

 service_ID

 totals

User

 user_ID

 name

 password

 guid

 administrator

User_has_Services

 User_user_ID

 Services_service_ID

connect_Users

The ORCA Actor Registry

System Specific Constants

List SponsorList Users

Delete Users

List Actors

Delete Actors

Add User

Add Client

Add Sponsor

Choose Category

Choose Service

check_heartbeats()

Assign Users

List Services

Delete Services

Download Services

ssh_command()

rsync_command()

compare_shasum()

match_attributes()

authorized_sponsor()

authorized_user()

Service

INSERTS

&

DELETES

authorized_actor()

service_tree()

CM-3

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 111 ~

PHP Code

add_client.php
 1 <?php
 2 //Purpose: Add a new client actor

 3 //Means: Connect to the Users database as user "workers"

 4 //Conventions: na stands for "new actor"

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

 10 <? //

 11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14

 15 $inactive = 1200;

 16 if (isset($_SESSION['start'])) {

 17 $session_life = time() - $_SESSION['start'];

 18 if ($session_life > $inactive) {

 19 header("Location: user_logout.php");

 20

 21 $_SESSION['valid_user'] = 'false';

 22 //CLOSE PREVIOUS SESSION*

 23 $_SESSION;

 24 session_destroy();

 25 }

 26 }

 27 //Set the session start time

 28 $_SESSION['start'] = time();

 29

 30 ///////// START OF PAGE /////////////////

 31

 32 if ($_SESSION['valid_user'] == true

 33 AND $_SESSION['authorized_user'] == true

 34 AND $_SESSION['administrator'] == "1")

 35 {

 36 ?>

 37 <?php

 38 include '../scripts/connect_Users.php';

 39 include '../scripts/header.php';

 40 include 'functions_User.php';

 41 include 'functions_php.php';

 42

 43 connect_Users();

 44

 45 echo "<h3><center>Add Client</center></h3>";

 46

 47 //Display the menu ribbon

 48 include 'menu.php';

 49 //adjusts the header

 50 echo "
";

 51 ?>

 52

 53 <div id="wrap">

 54

 55 <? ///

 56 // Check the posted variables after "Submit"

 57 if (isset($_POST['na_submit']))

 58 {

 59 //if a new user name is entered...

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 112 ~

 60 if(!empty($_POST['na_name']) and

 61 !empty($_POST['na_ip']) and

 62 !empty($_POST['na_port']) and

 63 !empty($_POST['na_private_key_loc']) and

 64 !empty($_POST['na_mss_user']))

 65 {

 66 // add a GUID

 67 $na_guid = gen_uuid();

 68

 69 // see if the user already exists

 70 $query=sprintf("SELECT *

 71 FROM Actor");

 72

 73 $result = mysql_query($query);

 74

 75 while($row = mysql_fetch_array($result))

 76 {

 77 //Check the name

 78 if($_POST['na_name'] == $row['name'])

 79 {

 80 echo "
Actor name ".$_POST['na_name']."

 81 already exists.
";

 82 unset_na_vars();

 83 die(mysql_error());

 84 }

 85 else

 86 {

 87 if(!empty($_POST['na_name'])) {

 88 $na_name = $_POST['na_name'];

 89 }

 90 else

 91 {

 92 echo "
Please enter your Client's

 93 Name.
";

 94 unset_na_vars();

 95 die(mysql_error());

 96 }

 97 }

 98

 99 ///

100 //Check the IP address format and port

101 // and load the private key and mss_user

102 if(filter_var($_POST['na_ip'], FILTER_VALIDATE_IP))

103 {

104 $na_ip = $_POST['na_ip'];

105 if(isset($_POST['na_port']) and

106 $_POST['na_port'] >= 0 and

107 $_POST['na_port'] < 65536) {

108 $na_port = $_POST['na_port'];

109 }

110 else {

111 //default port

112 $na_port = 22;

113 }

114 //Individual checks for na_private_key_loc,

115 // mss_user, and name

116 if(!empty($_POST['na_private_key_loc'])) {

117 $na_private_key_loc = $_POST['na_private_key_loc'];

118 }

119 else

120 {

121 echo "
Please enter your Client's

122 Private Key.
";

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 113 ~

123 unset_na_vars();

124 die(mysql_error());

125 }

126 if(!empty($_POST['na_mss_user'])) {

127 $na_mss_user = $_POST['na_mss_user'];

128 }

129 else

130 {

131 echo "
Please enter your Client's

132 MSS User.
";

133 unset_na_vars();

134 die(mysql_error());

135 }

136 }

137 else

138 {

139 echo "
The IP address for ".$_POST['na_name']."

140 appears to be invalid.
";

141 unset_na_vars();

142 die(mysql_error());

143 }

144 }

145 //INSERT all of the values into User db

146 $query = mysql_query(

147 "INSERT INTO Actor (

148 guid,

149 name,

150 ip,

151 port,

152 private_key_loc,

153 mss_user)

154 VALUES(

155 '$na_guid',

156 '$na_name',

157 '$na_ip',

158 '$na_port',

159 '$na_private_key_loc',

160 '$na_mss_user') ")

161 or die(mysql_error() . "\n Query1: " . $query);

162

163 echo "New CLIENT ".$na_name." inserted.<HR><pre>

164 GUID: ".$na_guid."

165 IP and Port: ".$na_ip.":".$na_port."

166 Private Key: ".$na_private_key_loc."

167 MSS User: ".$na_mss_user."</pre>";

168 unset_na_vars();

169 mysql_close(connect_Users()); }

170 else

171 {

172 echo "
 Please fill out the form completely.";

173 unset_na_vars();

174 mysql_close(connect_Users());

175 }

176

177

178 // Set the variables to null and close the connection

179 unset_na_vars();

180 mysql_close(connect_Users());

181 }

182 else

183 {

184 //Display the texboxes in table form

185 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 114 ~

186 <table style="margin-left:25px; table-layout: auto;"

187 border="0"

188 cellspacing="10"

189 cellpadding="1" >

190

191 Insert the new CLIENT data:

192 <HR>

193 <form method="post" action="add_client.php">

194 <tr>

195 <th align="right">Name</th>

196 <td align="left">

197 <input type="text"

198 name="na_name"

199 size="40"></td>

200 </tr>

201 <tr>

202 <th align="right">IP Address</th>

203 <td align="left">

204 <input type="text"

205 name="na_ip"

206 size="17"></td>

207 </tr>

208 <tr>

209 <th align="right">Port</th>

210 <td align="left">

211 <input type="text"

212 name="na_port"

213 size="5">(default: 22)</td>

214 </tr>

215 <tr>

216 <th align="right">Private Key Location</th>

217 <td align="left">

218 <input type="text"

219 name="na_private_key_loc"

220 size="50"></td>

221 </tr>

222 <tr>

223 <th align="right">MSS User Name</th>

224 <td align="left">

225 <input type="text"

226 name="na_mss_user"

227 size="20"></td>

228 </tr>

229 <tr>

230 <th><? //Placeholder ?></th>

231 <td align="left">

232 <input name="na_submit"

233 type="Submit"

234 value="Submit"></td>

235 </tr>

236 </form>

237

238 <div id="foot">

239 <?

240 }

241

242 echo "</table>";

243 echo "</div>";

244

245 include('../scripts/footer.php');

246 echo "</div>";

247 ?>

248

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 115 ~

249 <?php

250 ///////// END OF PAGE /////////////////

251 }

252 else

253 {

254 //time expired or access denied; log in again

255 include ('../scripts/header.php');

256 ?>

257 Either you are not allowed to access this page, or your session has expired.

258 Please log in again.

259

260 <?php

261 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 116 ~

add_sponsor.php
 1 <?php

 2 //Purpose: Add a new sponsor actor

 3 //Means: Connect to the Users database as user "workers"

 4 //Conventions: ne stands for "new actor"

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

 10 <? //

 11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14

 15 $inactive = 1200;

 16 if (isset($_SESSION['start'])) {

 17 $session_life = time() - $_SESSION['start'];

 18 if ($session_life > $inactive) {

 19 header("Location: user_logout.php");

 20

 21 $_SESSION['valid_user'] = 'false';

 22 //CLOSE PREVIOUS SESSION*

 23 $_SESSION;

 24 session_destroy();

 25 }

 26 }

 27 //Set the session start time

 28 $_SESSION['start'] = time();

 29

 30 ///////// START OF PAGE /////////////////

 31

 32 if ($_SESSION['valid_user'] == true

 33 AND $_SESSION['administrator'] == 1)

 34 {

 35 ?>

 36 <?php

 37 include '../scripts/connect_Users.php';

 38 include '../scripts/header.php';

 39 include 'functions_User.php';

 40

 41 connect_Users();

 42

 43 echo "<h3><center>Add Sponsor</center></h3>";

 44

 45 //Display the menu ribbon

 46 include 'menu.php';

 47 //adjusts the header

 48 echo "
";

 49 ?>

 50

 51 <div id="wrap">

 52

 53 <? ///

 54 // Check the posted variables after "Submit"

 55 if (isset($_POST['na_submit']))

 56 {

 57 //Set the actor as a sponsor

 58 $na_sponsor = 1;

 59

 60 //if a new user name is entered...

 61 if(!empty($_POST['na_guid']) and

 62 !empty($_POST['na_name']) and

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 117 ~

 63 !empty($_POST['na_ip']) and

 64 !empty($_POST['na_port']) and

 65 !empty($_POST['na_private_key_loc']) and

 66 !empty($_POST['na_mss_user']))

 67 {

 68 // see if the user already exists

 69 $query=sprintf("SELECT *

 70 FROM Actor");

 71

 72 $result = mysql_query($query);

 73

 74 while($row = mysql_fetch_array($result))

 75 {

 76

 77 //Check the GUID

 78 if($_POST['na_guid'] == $row['guid'])

 79 {

 80 echo "
Actor GUID ".$_POST['na_guid'].

 81 " already exists.
";

 82 unset_na_vars();

 83 die(mysql_error());

 84 }

 85 else

 86 {

 87 if(!empty($_POST['na_guid'])) {

 88 $na_guid = $_SESSION['na_guid'];

 89 }

 90 else

 91 {

 92 echo "
Please enter your Sponsor's GUID.
";

 93 unset_na_vars();

 94 die(mysql_error());

 95 }

 96 }

 97

 98 //Check the name

 99 if($_POST['na_name'] == $row['name'])

100 {

101 echo "
Actor name ".$_POST['na_name']."

102 already exists.
";

103 unset_na_vars();

104 die(mysql_error());

105 }

106 else

107 {

108 if(!empty($_POST['na_name'])) {

109 $na_name = $_POST['na_name'];

110 }

111 else

112 {

113 echo "
Please enter your Sponsor's

114 Name.
";

115 unset_na_vars();

116 die(mysql_error());

117 }

118 }

119

120 ///

121 //Check the IP address format and port

122 // and load the private key and mss_user

123 if(filter_var($_POST['na_ip'], FILTER_VALIDATE_IP))

124 {

125 $na_ip = $_POST['na_ip'];

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 118 ~

126 if(isset($_POST['na_port']) and

127 $_POST['na_port'] >= 0 and

128 $_POST['na_port'] < 65536) {

129 $na_port = $_POST['na_port'];

130 }

131 else {

132 $na_port = 22;

133 }

134 //Individual checks for na_private_key_loc,

135 // mss_user, and name

136 if(!empty($_POST['na_private_key_loc'])) {

137 $na_private_key_loc = $_POST['na_private_key_loc'];

138 }

139 else

140 {

141 echo "
Please enter your Sponsor's

142 Private Key.
";

143 unset_na_vars();

144 die(mysql_error());

145 }

146 if(!empty($_POST['na_mss_user'])) {

147 $na_mss_user = $_POST['na_mss_user'];

148 }

149 else

150 {

151 echo "
Please enter your Sponsor's

152 MSS User.
";

153 unset_na_vars();

154 die(mysql_error());

155 }

156 }

157 else

158 {

159 echo "
The IP address for ".$_POST['na_name']."

160 appears to be invalid.
";

161 unset_na_vars();

162 die(mysql_error());

163 }

164 }

165 //INSERT all of the values into User db

166 $query = mysql_query(

167 "INSERT INTO Actor (

168 guid,

169 name,

170 ip,

171 port,

172 private_key_loc,

173 mss_user,

174 sponsor)

175 VALUES(

176 '$na_guid',

177 '$na_name',

178 '$na_ip',

179 '$na_port',

180 '$na_private_key_loc',

181 '$na_mss_user',

182 '$na_sponsor') ")

183 or die(mysql_error() . "\n Query2: " . $query);

184

185 echo "New SPONSOR ".$na_name." inserted.<HR><pre>

186 GUID: ".$na_guid."

187 IP and Port: ".$na_ip.":".$na_port."

188 Private Key: ".$na_private_key_loc."

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 119 ~

189 MSS User: ".$na_mss_user."</pre>";

190 unset_na_vars();

191 mysql_close(connect_Users()); }

192 else

193 {

194 echo "
 Please fill out the form completely.";

195 unset_na_vars();

196 mysql_close(connect_Users());

197 }

198

199

200 // Set the variables to null and close the connection

201 unset_na_vars();

202 mysql_close(connect_Users());

203 }

204 else

205 {

206 //Display the texboxes in table form

207 ?>

208 <table style="margin-left:25px; table-layout: auto;"

209 border="0"

210 cellspacing="10"

211 cellpadding="1" >

212

213 Insert the new SPONSOR data. The Sponsor's GUID is

214 REQUIRED:

215 <HR>

216 <form method="post" action="add_sponsor.php">

217 <tr>

218 <th align="right">GUID</th>

219 <td align="left">

220 <input type="text"

221 name="na_guid"

222 size="50"></td>

223 </tr>

224 <tr>

225 <th align="right">Name</th>

226 <td align="left">

227 <input type="text"

228 name="na_name"

229 size="40"></td>

230 </tr>

231 <tr>

232 <th align="right">IP Address</th>

233 <td align="left">

234 <input type="text"

235 name="na_ip"

236 size="17"></td>

237 </tr>

238 <tr>

239 <th align="right">Port</th>

240 <td align="left">

241 <input type="text"

242 name="na_port"

243 size="5">(default: 22)</td>

244 </tr>

245 <tr>

246 <th align="right">Private Key Location</th>

247 <td align="left">

248 <input type="text"

249 name="na_private_key_loc"

250 size="50"></td>

251 </tr>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 120 ~

252 <tr>

253 <th align="right">MSS User Name</th>

254 <td align="left">

255 <input type="text"

256 name="na_mss_user"

257 size="20"></td>

258 </tr>

259 <tr>

260 <th><? //Placeholder ?></th>

261 <td align="left">

262 <input name="na_submit"

263 type="Submit"

264 value="Submit"></td>

265 </tr>

266 </form>

267

268 <div id="foot">

269 <?

270 }

271

272 echo "</table>";

273 echo "</div>";

274

275 include('../scripts/footer.php');

276 echo "</div>";

277 ?>

278

279 <?php

280 ///////// END OF PAGE /////////////////

281 }

282 else

283 {

284 //time expired or access denied; log in again

285 include ('../scripts/header.php');

286 ?>

287 Either you are not allowed to access this page, or your session has expired.

288 Please log in again.

289

290 <?php

291 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 121 ~

add_user.php
 1 <?php

 2 //Purpose: Add a new user or administrator

 3 //Means: Connect to the Users database as user "workers"

 4 //Conventions: nu stands for "new user"

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

 10 <? //

 11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14

 15 $inactive = 1200;

 16 if (isset($_SESSION['start'])) {

 17 $session_life = time() - $_SESSION['start'];

 18 if ($session_life > $inactive) {

 19 header("Location: user_logout.php");

 20

 21 $_SESSION['valid_user'] = 'false';

 22 //CLOSE PREVIOUS SESSION*

 23 $_SESSION;

 24 session_destroy();

 25 }

 26 }

 27 //Set the session start time

 28 $_SESSION['start'] = time();

 29

 30 ///////// START OF PAGE /////////////////

 31

 32 if ($_SESSION['valid_user'] == true

 33 AND $_SESSION['administrator'] == 1)

 34 {

 35 ?>

 36 <?php

 37 include '../scripts/connect_Users.php';

 38 include '../scripts/header.php';

 39 include 'functions_User.php';

 40 include 'functions_php.php';

 41

 42 connect_Users();

 43

 44 echo "<h3><center>Add User</center></h3>";

 45

 46 //Display the menu ribbon

 47 include 'menu.php';

 48 //adjusts the header

 49 echo "
";

 50 ?>

 51

 52 <div id="wrap">

 53

 54 <? ///

 55 // Check the user name and password after "Submit"

 56 if (isset($_POST['nu_submit']))

 57 {

 58 //if a new user name is entered...

 59 if(!empty($_POST['nu_name']))

 60 {

 61 // see if the user already exists

 62 $query=sprintf("SELECT name

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 122 ~

 63 FROM User

 64 WHERE name='%s'",

 65 mysql_real_escape_string($_SESSION['nu_name']));

 66

 67 $result = mysql_query($query);

 68 $row = mysql_fetch_array($result);

 69

 70 // if so, null all of the variables

 71 if($row['name'])

 72 {

 73 echo "
User ".$_POST['nu_name']." already exists.
";

 74 null_nu_vars();

 75 die(mysql_error());

 76 }

 77 else

 78 {

 79 $nu_name = $_SESSION['nu_name'];

 80 }

 81 }

 82 else

 83 {

 84 echo "
You must include a user name.
";

 85 null_nu_vars();

 86 die(mysql_error());

 87 }

 88 ///

 89 //make sure the admin puts in the same password,

 90 // or or do not add the user

 91 if ($_POST['nu_password1'] != $_POST['nu_password2'])

 92 {

 93 echo "
Password entries do not match!";

 94 null_nu_vars();

 95 die(mysql_error());

 96 }

 97 else

 98 {

 99 $nu_password = $_SESSION['nu_password1'];

100 }

101 // add a GUID

102 $nu_guid = gen_uuid();

103 // set the administrator/user field

104 if ($_SESSION['nu_client_administrator'] == 'on')

105 {

106 $nu_administrator = 2;

107 }

108 elseif ($_SESSION['nu_local_administrator'] == 'on')

109 {

110 $nu_administrator = 1;

111 }

112 else

113 {

114 $nu_administrator = 0;

115 }

116 //INSERT all of the values into User db

117 $query = mysql_query(

118 "INSERT INTO User (

119 name,

120 password,

121 guid,

122 administrator)

123 VALUES(

124 '$nu_name',

125 '$nu_password',

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 123 ~

126 '$nu_guid',

127 '$nu_administrator') ")

128 or die(mysql_error() . "\n Query3: " . $query);

129 //Display upon success

130 if ($nu_administrator == 1)

131 {

132 echo "
New ADMINISTRATOR ".$nu_name." Inserted.";

133 }

134 else

135 {

136 echo "
New USER ".$nu_name." Inserted.";

137 }

138 // Set the variables to null and close the connection

139 null_nu_vars();

140 mysql_close(connect_Users());

141 }

142 else

143 {

144 //Display the texboxes in table form

145 ?>

146 <table style="margin-left:25px; table-layout: auto;"

147 border="0"

148 cellspacing="10"

149 cellpadding="1" >

150

151 Insert the new USER data:

152 <HR>

153 <form method="post" action="add_user.php">

154 <tr>

155 <th align="right">Name</th>

156 <td align="left">

157 <input type="text"

158 name="nu_name"

159 size="20"></td>

160 </tr>

161 <tr>

162 <th align="right">Password</th>

163 <td align="left">

164 <input type="password"

165 name="nu_password1"

166 size="20"></td>

167 </tr>

168 <tr>

169 <th align="right">Enter Password Again</th>

170 <td align="left">

171 <input type="password"

172 name="nu_password2"

173 size="20"></td>

174 </tr>

175 <tr>

176 <th align="right">Local Administrator</th>

177 <td align="left">

178 <input type="checkbox"

179 name="nu_local_administrator"></td>

180 </tr>

181 <tr>

182 <th align="right">Client Administrator</th>

183 <td align="left">

184 <input type="checkbox"

185 name="nu_client_administrator"></td>

186 </tr>

187 <tr>

188 <th><? //Placeholder ?></th>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 124 ~

189 <td align="left">

190 <input name="nu_submit"

191 type="Submit"

192 value="Submit"></td>

193 </tr>

194 </form>

195

196 <div id="foot">

197 <?

198 }

199 echo "</table>";

200 echo "</div>";

201

202 include('../scripts/footer.php');

203 echo "</div>";

204 ?>

205

206 <?php

207 ///////// END OF PAGE /////////////////

208 }

209 else

210 {

211 //time expired or access denied; log in again

212 include ('../scripts/header.php');

213 ?>

214 Either you are not allowed to access this page, or your session has expired.

215 Please log in again.

216

217 <?php

218 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 125 ~

assign_users.php
 1 <?php

 2 //Purpose: Grant/Deny user download ability from an Actor.

 3 //Means: Connect to the Actor, Actor_has_User, and User dbs.

 4 // tables as user "workers".

 5 // One must assign the user to a client and a sponsor because

 6 // MSS checks for both by comparing session data with the databases.

 7 //Conventions: au stands for "assign user"

 8 //Author: John P. Quan

 9 //Version: 1.0

 10 //Date: 20120105

 11 ?>

 12

 13 <? //

 14 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 15 session_cache_expire(20);

 16 session_start();

 17

 18 $inactive = 1200;

 19 if (isset($_SESSION['start'])) {

 20 $session_life = time() - $_SESSION['start'];

 21 if ($session_life > $inactive) {

 22 header("Location: user_logout.php");

 23

 24 $_SESSION['valid_user'] = 'false';

 25 //CLOSE PREVIOUS SESSION*

 26 $_SESSION;

 27 session_destroy();

 28 }

 29 }

 30 //Set the session start time

 31 $_SESSION['start'] = time();

 32

 33 ///////// START OF PAGE /////////////////

 34

 35 if ($_SESSION['valid_user'] == true

 36 AND $_SESSION['administrator'] == 1)

 37 {

 38 ?>

 39 <?php

 40 include '../scripts/connect_Users.php';

 41 include '../scripts/header.php';

 42 include 'functions_User.php';

 43

 44 connect_Users();

 45

 46 echo "<h3><center>Assign Users</center></h3>";

 47

 48 //Display the menu ribbon

 49 include 'menu.php';

 50 //adjusts the header

 51 echo "
";

 52 ?>

 53

 54 <div id="wrap">

 55

 56 <? ///

 57 // Insert user assignments after "Submit"

 58 if (isset($_POST['au_submit']))

 59 {

 60 //First, delete the current Actor/User relationships

 61 $del= mysql_query("DELETE FROM Actor_has_User")

 62 or die(mysql_error() . "\n Query4: " . $del);

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 126 ~

 63

 64 //Relate each checked user to an actor

 65 foreach ($_POST['au_assign'] as $value) {

 66

 67 //Parse the "$Actor_guid." ".$User_user_ID" string

 68 // into array $var

 69 $var = explode(" ", $value);

 70

 71 //Insert the Actor_guid, user_ID into Actor_has_User

 72 $ins = mysql_query(

 73 "INSERT INTO Actor_has_User (

 74 Actor_guid,

 75 User_user_ID)

 76 VALUES(

 77 '$var[0]',

 78 '$var[1]') ")

 79 or die(mysql_error() . "\n Query5: " . $ins);

 80

 81 //null the au variables

 82 unset_au_vars();

 83 }

 84 mysql_close(connect_Users());

 85

 86 ?>
Users assigned.
 <?

 87 }

 88 else

 89 {

 90 ?>

 91 Assign a user to his or her respective actor.

 92 Checked users are authorized.

 93 Unchecked users are not.

 94 <HR>

 95 <?

 96 //Display the textboxes in table form

 97 // of each actor with all users below

 98 // with checkboxes to relate the actor

 99 // to a user

100 $query=sprintf("SELECT guid,

101 name,

102 ip,

103 port,

104 sponsor

105 FROM Actor");

106

107 $result = mysql_query($query);

108

109 while($row = mysql_fetch_array($result)) {

110

111 ?>

112 <table style="margin-left:2px"

113 border="0"

114 cellspacing="10"

115 cellpadding="1">

116 <h2>

117 <tr align="left">

118 <th width="198"><? echo $row['name']; ?></th>

119 <th align="left"><div style="border: solid 0 #060;

120 border-color: rgb(248, 180, 66);

121 border-left-width:2px;

122 padding-left:0.5ex">

123 <? echo $row['ip'].":".$row['port'];

124 $ip_explode = explode(":", $_SERVER['HTTP_HOST']);

125 if($row['sponsor'] == 1 and

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 127 ~

126 ($ip_explode[0] == $row['ip']))

127 echo "<td>LOCAL SPONSOR</td>";

128 elseif ($row['sponsor'] == 1)

129 echo "<td>Client Sponsor</td>"?>

130 </div></th>

131 </tr>

132 <tr>

133 <td align="right">

134 <form id="form_assign"

135 method="POST"

136 action="assign_users.php">

137 <input name="au_submit"

138 type="Submit"

139 value="Submit All">

140 </td>

141 <td>

142 <? get_user_assignments($row['guid']); ?>

143 </td>

144 </tr>

145 </h2>

146 <? } ?>

147

148 <div id="foot">

149 </form>

150 <?

151 }

152 echo "</table>";

153 echo "</div>";

154

155 include('../scripts/footer.php');

156 echo "</div>";

157 ?>

158

159 <?php

160 ///////// END OF PAGE /////////////////

161 }

162 else

163 {

164 //time expired or access denied; log in again

165 include ('../scripts/header.php');

166 ?>

167 Either you are not allowed to access this page, or your session has expired.

168 Please log in again.

169

170 <?php

171 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 128 ~

choose_category
 1 <?php

 2 //Purpose: Get an entire category of services as an authorized sponsor.

 3 // Update the Attributes, Attributes_have_Services, and Services

 4 // tables. Insert the administrator's info in the User table if

 5 // not already inserted, such as during a fresh install.

 6 //Means: Connect to the Services and Users db as "workers", rsync the

 7 // services in the filesystem, and ssh mysql commands to the child

 8 // sponsor from the parent sponsor.

 9 //Conventions: *_A stands for Attributes

 10 // *_A_h_S stands for Attributes_have_Services

 11 // *_S stands for Services

 12 // *_U stands for User

 13 //Author: John P. Quan

 14 //Version: 1.0

 15 //Date: 20120105

 16 ?>

 17

 18 <? //

 19 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 20 session_cache_expire(20);

 21 session_start();

 22

 23 $inactive = 1200;

 24 if (isset($_SESSION['start'])) {

 25 $session_life = time() - $_SESSION['start'];

 26 if ($session_life > $inactive) {

 27 header("Location: user_logout.php");

 28

 29 $_SESSION['valid_user'] = 'false';

 30 //CLOSE PREVIOUS SESSION*

 31 $_SESSION;

 32 session_destroy();

 33 }

 34 }

 35 //Set the session start time

 36 $_SESSION['start'] = time();

 37

 38 ///////// START OF PAGE /////////////////

 39

 40 if ($_SESSION['valid_user'] == true

 41 AND $_SESSION['authorized_user'] == true)

 42 {

 43 ?>

 44 <?php

 45

 46 include '../scripts/header.php';

 47 include 'functions_Shell.php';

 48

 49 echo "<h3><center>Choose Categories</center></h3>";

 50

 51 //Display the menu ribbon

 52 include 'menu.php';

 53 //adjusts the header

 54 echo "
";

 55 ?>

 56

 57 <div id="wrap">

 58

 59 <? ///

 60 // Choose a category to download

 61 if($_SESSION['administrator'] == 1 OR $_SESSION['administrator'] == 2

 62 AND sending_geni_heartbeats()) {

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 129 ~

 63

 64 if(isset($_POST['cc_submit'])) {

 65

 66 include_once 'functions_Shell.php';

 67 include_once 'functions_Services.php';

 68 include_once 'functions_User.php';

 69 include_once '../scripts/connect_Services.php';

 70 include_once '../scripts/connect_Users.php';

 71 include '../scripts/constants.php';

 72

 73 //Download the subset of services that the administrator of the

 74 // child sponsor chooses

 75 foreach($_POST['cc_category'] as $value) {

 76

 77 //Get the directory tree from Services

 78 connect_Services();

 79 $dir_path = directory_tree($value);

 80 mysql_close(connect_Services());

 81

 82 //download_category uses send_clent_command, which requires

 83 // remote connection info in Users.Actors

 84 connect_Users();

 85 download_category($dir_path);

 86 mysql_close(connect_Users());

 87 }

 88

 89 connect_Users();

 90

 91 //Get the db connection data for the child sponsor and

 92 // prepare for a one-time administrator insertion

 93 $query=sprintf("SELECT user_ID,

 94 name,

 95 password,

 96 guid,

 97 administrator

 98 FROM User

 99 WHERE user_ID='%s'",

100 mysql_real_escape_string($_SESSION['user_ID']))

101 or die(mysql_error() . "\n Query25: " . $query);

102

103 $result = mysql_query($query);

104

105 $user = mysql_fetch_array($result);

106

107 //Insert the user, who must be a client administrator on the parent

108 // sponsor into the Users.User db on an authorized child sponsor,

109 // if there are no other entries, such as when MSS is first

110 // installed. Duplicate Key Update effectually does nothing if

111 // the administrator already exists in the db. This also gives

112 // the client admin the same credentials as on the parent sponsor,

113 // but sets the user as a local administrator with full privileges.

114 $ins_U = "\\\"INSERT INTO User

115 VALUES (NULL,

116 '".$user['name']."',

117 '".$user['password']."',

118 '".$user['guid']."',

119 '1')

120 ON DUPLICATE KEY UPDATE name = name;\\\"";

121

122 $command_U = "echo $ins_U

123 | mysql -u".USERS_DB_USER."

124 -p".USERS_DB_PASS."

125 -hlocalhost ".

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 130 ~

126 USERS_DB;

127

128 //Deliver the insert statement for the User table

129 send_client_command('ssh', $command_U);

130

131 //Prepare the command to delete the Services tables

132 // from the child sponsor so we can reload them. We must

133 // delete Attributes_have_Services first becaues of foreign

134 // keys constraints.

135 $del = "\\\"DELETE FROM Attributes_have_Services;

136 DELETE FROM Attributes;

137 DELETE FROM Services;\\\"";

138 $command = "echo $del

139 | mysql -u".SERVICES_DB_USER."

140 -p".SERVICES_DB_PASS."

141 -hlocalhost ".

142 SERVICES_DB;

143

144 //Send the DELETE command

145 send_client_command('ssh', $command);

146

147 //Close Users so we can connect to services

148 mysql_close(connect_Users());

149

150 //Now connect to services to get the parent sponsor's

151 // *updated* list of attributes

152 connect_Services();

153

154 //Grab ALL of the attributes

155 $query=sprintf("SELECT *

156 FROM Attributes")

157 or die(mysql_error() . "\n Query26: " . $query);

158

159 $result = mysql_query($query);

160

161 while($row = mysql_fetch_array($result)) {

162

163 //Prepare the insert statement for delivery to

164 // the child sponsor

165 $ins_A = "";

166 //The root of the recursive table, MSS, requires

167 // the word NULL with no single quotes in the

168 // parent_ID

169 if($row['parent_ID'] == NULL) {

170 $ins_A = "\\\"INSERT INTO Attributes

171 VALUES ('".$row['attribute_ID']."',

172 '".$row['attribute']."',

173 '".$row['description']."',

174 NULL);\\\"";

175 }

176 else {

177 //Use parent_ID for everything else, and get rid of any

178 // parentheses because they ruin the msql-over-ssh queries.

179 $ins_A = "\\\"INSERT INTO Attributes

180 VALUES ('".$row['attribute_ID']."',

181 '".$row['attribute']."',

182 '". addslashes(

183 str_replace("(", "--",

184 str_replace(")", "--",

185 $row['description'])))."',

186 '".$row['parent_ID']."');\\\"";

187 }

188 $command_A = "echo $ins_A

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 131 ~

189 | mysql -u".SERVICES_DB_USER."

190 -p".SERVICES_DB_PASS."

191 -hlocalhost ".

192 SERVICES_DB;

193

194 mysql_close(connect_Services());

195

196 //We need the child sponsor connection data again for the

197 // send_client_commands

198 connect_Users();

199 //Deliver the insert statement for the Attribute table

200 send_client_command('ssh', $command_A);

201 mysql_close(connect_Users());

202 }

203 //Now we will only update the Attributes_have_Services and the

204 // Services tables for the services we downloaded above, thus

205 // completing the MSS "subset of services" requirement.

206 foreach($_SESSION['cc_category'] as $category) {

207

208 connect_Services();

209

210 //Grab all of the Attributes_have_Services

211 // that match the category

212 $query=sprintf("SELECT *

213 FROM Attributes_have_Services

214 WHERE Attributes_attribute_ID='%s'",

215 mysql_real_escape_string($category))

216 or die(mysql_error() . "\n Query27: " . $query);

217

218 $result = mysql_query($query);

219

220 while($row = mysql_fetch_array($result)) {

221

222 //Get only the chosen services

223 $query_S=sprintf("SELECT *

224 FROM Services

225 WHERE service_ID='%s'",

226 mysql_real_escape_string($row['Services_service_ID']))

227 or die(mysql_error() . "\n Query28: " . $query_S);

228

229 $result_S= mysql_query($query_S);

230

231 $row_S= mysql_fetch_array($result_S);

232 //Prepare the insert statement for delivery to

233 // the child sponsor

234 $ins_S = "";

235 //Remove any parentheses, as above

236 $ins_S = "\\\"INSERT INTO Services

237 VALUES ('".$row_S['service_ID']."',

238 '".$row_S['name']."',

239 '".$row_S['filename']."',

240 '". addslashes(

241 str_replace("(", "--",

242 str_replace(")", "--",

243 $row_S['description'])))."',

'".$row_S['shasum']."',

244 '".$row_S['developer']."',

245 '".$row_S['publisher']."');\\\"";

246

247 $command_S = "echo $ins_S

248 | mysql -u".SERVICES_DB_USER."

249 -p".SERVICES_DB_PASS."

250 -hlocalhost ".

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 132 ~

251 SERVICES_DB;

252

253 mysql_close(connect_Services());

254

255 //Deliver the INSERT statement for the Services table

256 connect_Users();

257 send_client_command('ssh', $command_S);

258 mysql_close(connect_Users());

259

260 //Prepare the insert statement for delivery to

261 // the child sponsor

262 $ins_A_h_S = "";

263

264 $ins_A_h_S = "\\\"INSERT INTO Attributes_have_Services

265 VALUES ('".$row['Attributes_attribute_ID']."',

266 '".$row['Services_service_ID']."');\\\"";

267

268 $command_A_h_S = "echo $ins_A_h_S

269 | mysql -u".SERVICES_DB_USER."

270 -p".SERVICES_DB_PASS."

271 -hlocalhost ".

272 SERVICES_DB;

273

274 //Deliver the insert statement for the

275 // Attributes_have_Services table

276 connect_Users();

277 send_client_command('ssh', $command_A_h_S);

278 mysql_close(connect_Users());

279 }

280 }

281 echo "Updated the Services database.
";

282 //Unset the choose category session and post variables

283 unset_cc_vars();

284 }

285 else

286 {

287 include 'functions_Services.php';

288 include '../scripts/connect_Services.php';

289 include '../scripts/constants.php';

290

291 connect_Services();

292

293 echo "This page allows administrators of authorized sponsors

294 to select entire categories and all of the services within.

295 \"Check\" the box next to the <i>Category</i> to download

296 the entire directory of services.
";

297

298 // Find the top of the recursive Attributes tree to print

299 // all of the categories.

300 $query=sprintf("SELECT *

301 FROM Attributes

302 WHERE parent_ID IS NULL")

303 or die(mysql_error() . "\n Query24: " . $query);

304

305 $result = mysql_query($query);

306

307 $row = mysql_fetch_array($result);

308 ?>

309 <hr>

310 <table style="margin-left:2px"

311 border="0"

312 cellspacing="0"

313 cellpadding="4">

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 133 ~

314

315 <tr>

316 <td align="left">

317 <form id="form_assign"

318 method="POST"

319 action="choose_category.php">

320 <input name="cc_submit"

321 type="Submit"

322 value="Submit All">

323 </td>

324 </tr>

325 <h2>

326 <tr align="left">

327 <th width="198">{Level} Category</th>

328 <th><align-left><div style="border: solid 0 #060;

329 border-color: rgb(248, 180, 66);

330 border-left-width:2px;

331 padding-left:0.5ex">

332 Description

333 </align-left></div></th>

334 </tr>

335 </h2>

336 </table>

337

338 <table style="margin-left:3px"

339 border="0"

340 cellspacing="0"

341 cellpadding="4">

342

343 <tr align="left">

344 <td width="197">

345 <? //print attribute at the top of the tree

346 echo "{1} ".$row[1]; ?>

347 </td>

348

349 <td align="left">

350 <div style="border: solid 0 #060;

351 border-color: rgb(248, 180, 66);

352 align: 'left';

353 border-left-width:2px;

354 padding-left:0.5ex">

355 <? //print description at the top of the

356 // tree

357 echo $row[2]; ?></div>

358 </td>

359 </tr>

360 <div id="foot">

361 <? //the attribute MSS is "hardwired" in at 1 because it's

362 // parent_ID=NULL, so start recursion at 2

363 category_tree($row[0], 2);

364 }

365 mysql_close(connect_Services());

366 }

367 else {

368 echo "This actor does not appear to be an authorized sponsor.

369 If this is incorrect, please add this actor as a sponsor on the

370 <i>Add Sponsor</i> page.
";

371 }

372 ?>

373

374 <?php

375 ///////// END OF PAGE /////////////////

376 }

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 134 ~

377 else

378 {

379 //time expired or access denied; log in again

380 include ('../scripts/header.php');

381 ?>

382 Either you are not allowed to access this page, or your session has expired.

383 Please log in again.

384

385 <?php

386 } ?>

387

388 <?

389 echo "</table>";

390 echo "</div>";

391

392 include('../scripts/footer.php');

393 echo "</div>";

394 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 135 ~

choose_service.php
 1 <?php

 2 //Purpose: Get a service as an authorized user on the local machine

 3 //Means: Connect to the Services database as user "workers"

 4 // Use functions match_service_attributes()

 5 // service_tree()

 6 //Conventions:

 7 //Author: John P. Quan

 8 //Version: 1.0

 9 //Date: 20120105

 10 ?>

 11

 12 <? //

 13 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 14 session_cache_expire(20);

 15 session_start();

 16

 17 $inactive = 1200;

 18 if (isset($_SESSION['start'])) {

 19 $session_life = time() - $_SESSION['start'];

 20 if ($session_life > $inactive) {

 21 header("Location: user_logout.php");

 22

 23 $_SESSION['valid_user'] = 'false';

 24 //CLOSE PREVIOUS SESSION*

 25 $_SESSION;

 26 session_destroy();

 27 }

 28 }

 29 //Set the session start time

 30 $_SESSION['start'] = time();

 31

 32 ///////// START OF PAGE /////////////////

 33

 34 if ($_SESSION['valid_user'] == true

 35 AND $_SESSION['authorized_user'] == true)

 36 {

 37 ?>

 38 <?php

 39 //choose the service to download and

 40 // add to the user's list

 41 include '../scripts/connect_Services.php';

 42 include '../scripts/header.php';

 43 include 'functions_Services.php';

 44 include '../scripts/constants.php';

 45

 46 connect_Services();

 47

 48 echo "<h3><center>Choose Service</center></h3>";

 49

 50 //Display the menu ribbon

 51 include 'menu.php';

 52 //adjusts the header

 53 echo "
";

 54 ?>

 55

 56 <div id="wrap">

 57

 58 <? ///

 59 // Choose a service to download

 60

 61 echo "This page allows users to select services.

 62 \"Click\" the <i>Service ID</i> button to download new services.
";

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 136 ~

 63

 64 // Find the top of the recursive Attributes tree

 65 $query=sprintf("SELECT *

 66 FROM Attributes

 67 WHERE parent_ID IS NULL")

 68 or die(mysql_error() . "\n Query6: " . $query);

 69

 70 $result = mysql_query($query);

 71

 72 $row = mysql_fetch_array($result);

 73 ?>

 74 <hr>

 75 <table style="margin-left:2px" border="0" cellspacing="0" cellpadding="4">

 76 <h2>

 77 <tr align="left">

 78 <th width="198">{Level} Category</th>

 79 <th><align-left><div style="border: solid 0 #060;

 80 border-color: rgb(248, 180, 66);

 81 border-left-width:2px;

 82 padding-left:0.5ex">

 83 Description

 84 </align-left></div></th>

 85 </tr>

 86 </h2>

 87 </table>

 88

 89 <table style="margin-left:3px" border="0" cellspacing="0" cellpadding="4">

 90

 91 <tr align="left">

 92 <td width="197">

 93 <? //print attribute at the top of the tree

 94 echo "{1} ".$row[1]; ?>

 95 </td>

 96

 97 <td align="left">

 98 <div style="border: solid 0 #060;

 99 border-color: rgb(248, 180, 66);

100 align: 'left';

101 border-left-width:2px;

102 padding-left:0.5ex">

103 <? //print description at the top of the tree

104 echo $row[2]; ?></div>

105 </td>

106 </tr>

107 <div id="foot">

108 <? //the attribute MSS is "hardwired" in at 1 because it's parent_ID=NULL,

109 // so start recursion at 2

110 service_tree($row[0], 2);

111 ?>

112

113 <?php

114 ///////// END OF PAGE /////////////////

115 }

116 else

117 {

118 //time expired or access denied; log in again

119 include ('../scripts/header.php');

120 ?>

121 Either you are not allowed to access this page, or your session has expired.

122 Please log in again.

123

124 <?php

125 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 137 ~

126

127 <?

128 echo "</table>";

129 echo "</div>";

130

131 include('../scripts/footer.php');

132 echo "</div>";

133 ?>

connect_orca.php
 1 <?php

 2 //Purpose: Connect to the orca database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6

 7 include 'constants.php';

 8

 9 function connect_orca()

10 {

11

12 $username=GENI_DB_USER;

13 $password=GENI_DB_PASS;

14 $database=GENI_DB;

15

16 $con = mysql_connect(localhost,$username,$password);

17 @mysql_select_db($database) or die("Unable to select GENI database");

18

19 return $con;

20 }

21 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 138 ~

connect_Services.php
1 <?php

 2 //Purpose: Connect to the Services database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6

 7 include 'constants.php';

 8

 9 function connect_Services()

10 {

11

12 $username=SERVICES_DB_USER;

13 $password=SERVICES_DB_PASS;

14 $database=SERVICES_DB;

15

16 $con = mysql_connect(localhost,$username,$password);

17 @mysql_select_db($database) or die("Unable to select database Services");

18

19 return $con;

20 }

21 ?>

connect_Users.php
 1 <?php

 2 //Purpose: Connect to the Users database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6

 7 include 'constants.php';

 8

 9 function connect_Users()

10 {

11

12 $username=USERS_DB_USER;

13 $password=USERS_DB_PASS;

14 $database=USERS_DB;

15

16 $con = mysql_connect(localhost,$username,$password);

17 @mysql_select_db($database) or die("Unable to select database Users");

18

19 return $con;

20 }

21 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 139 ~

constants.php
 1 <?php

 2 //Purpose: Define Global variables for this sponsor

 3 //Means: One can put MSS files in /var/www/ , or one can put them elsewhere

 4 // in the filesystem, such as in the MSS_USER's home directory. Then,

 5 // create a soft link to the MSS/ directory. For example:

 6 // ln -s /home/work/MSS /var/www/MSS

 7 //Conventions:

 8 //Author: John P. Quan

 9 //Version: 1.0

10 //Date: 20120105

11 ?>

12

13 <?

14 //Where to store MSS services in the filesystem

15 define('MSS_SERVICES', '/usr/share');

16

17 //The location of the ORCA Actor Registry

18 define('GENI_HEARTBEATS', 'https://geni.renci.org:12443/registry/actors.jsp');

19

20 //The mysql db for the GENI control framework

21 define('GENI_DB', 'orca');

22

23 //The mysql db user for the GENI control framework

24 define('GENI_DB_USER', 'workers');

25

26 //The mysql password for the GENI control framework

27 define('GENI_DB_PASS', 'InsertPasswordHere');

28

29 //The mysql db for the MSS Users db

30 define('USERS_DB', 'Users');

31

32 //The mysql db user for the MSS Users db

33 define('USERS_DB_USER', 'workers');

34

35 //The mysql password for the MSS Users db

36 define('USERS_DB_PASS', 'InsertPasswordHere');

37

38 //The mysql db for the MSS Services

39 define('SERVICES_DB', 'Services');

40

41 //The mysql db user for the MSS Services

42 define('SERVICES_DB_USER', 'workers');

43

44 //The mysql password for the MSS Services

45 define('SERVICES_DB_PASS', 'InsertPasswordHere');

46

47 //The actor that performs MSS tasks on the client's behalf, such as

48 // connecting to the databases.

49 // This is a different user than Apache's user 'www-data',

50 // which performs SSH and SCP tasks on the sponsor's behalf.

51 define('MSS_USER', 'workers');

52

53 //The location of MSS PHP files and scripts in the filesystem

54 define('MSS_HOME', '/home/work');

55

56 //The universal location of the MSS functions and

57 // shell scripts in the filesytem. Apache user www-data

58 // must be able to access the directory and files

59 define('MSS_SCRIPTS', '/scripts/');

60 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 140 ~

cookie.php
1 <?php

 2 //Start the session, then make session and post variables equal.

 3 session_start();

 4 //Check if there are any POST variables set

 5 if(isset($_POST)) {

 6 //If there are POST variables set, then set a SESSION variable

 7 //With the same key name

 8 foreach($_POST as $key=>$value) {

 9 $_SESSION[$key] = $value;

10 }

11 }

12 //Check if there are any SESSION variables set

13 if(isset($_SESSION)) {

14 //If there are SESSION variables set, then set a POST variable

15 //With the same key name, so you don't have to change your

16 //Existing code to reflect '$_SESSION' instead of '$_POST'

17 foreach($_SESSION as $key=>$value) {

18 $_POST[$key] = $value;

19 }

20 }

21 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 141 ~

del_actors.php
 1 <?php

 2 //Purpose: Delete a sponsor or client

 3 //Means: Connect to the Users.Actor table as user "workers"

 4 //Conventions: da stands for "delete actor"

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

 10 <?

 11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14

 15 $inactive = 1200;

 16 if (isset($_SESSION['start']))

 17 {

 18 $session_life = time() - $_SESSION['start'];

 19 if ($session_life > $inactive)

 20 {

 21 header("Location: user_logout.php");

 22

 23 $_SESSION['valid_user'] = 'false';

 24 //CLOSE PREVIOUS SESSION*

 25 $_SESSION;

 26 session_destroy();

 27 }

 28 }

 29 //Set the session start time

 30 $_SESSION['start'] = time();

 31

 32 ///////// START OF PAGE /////////////////

 33

 34 if ($_SESSION['valid_user'] == true

 35 AND $_SESSION['administrator'] == 1)

 36 {

 37 ?>

 38

 39 <?

 40 include '../scripts/connect_Users.php';

 41 include '../scripts/header.php';

 42 include 'functions_User.php';

 43

 44 connect_Users();

 45

 46 echo "<h3><center>Delete Actors</center></h3>";

 47 //Display the menu ribbon

 48 include 'menu.php';

 49 //adjusts the header

 50 echo "
";

 51 ?>

 52

 53 <div id="wrap">

 54

 55 <? ///

 56 // Check the user name and password after "Submit"

 57 if (isset($_POST['da_submit']))

 58 {

 59 echo "Deleted the following actors:
";

 60 echo "<HR>";

 61 //Return a count of deleted actors.

 62 foreach($_POST['del_actor'] as $value) {

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 142 ~

 63

 64 $del = explode(" ", $value, 2);

 65

 66 echo "<pre> $del[1]</pre>";

 67

 68 //Delete the Actor from Actor_has_User first

 69 // because of foreign keys

 70 $query=sprintf("DELETE FROM Actor_has_User

 71 WHERE Actor_guid='%s'",

 72 mysql_real_escape_string($del[0]));

 73 $result= mysql_query($query);

 74

 75 //Delete from Actor next

 76 $query=sprintf("DELETE FROM Actor

 77 WHERE guid='%s'",

 78 mysql_real_escape_string($del[0]));

 79 $result= mysql_query($query);

 80 }

 81 //unset the delete actor variables

 82 unset_da_vars();

 83 mysql_close(connect_Users());

 84 }

 85 else {

 86

 87 // Retrieve the Actor List

 88 $query = "SELECT * FROM Actor";

 89 $result = mysql_query($query);

 90

 91 echo "<i>Check</i> the actors to delete

 92 and <i>Click</i> the \"Submit All\" button.
" ?>

 93 <HR>

 94 <!--Create a table of current Services-->

 95 <table style="margin-left:25px; table-layout: auto;"

 96 border="0"

 97 cellspacing="10"

 98 cellpadding="1" >

 99 <tr>

100 <td align="left">

101 <form id="form_assign"

102 method="POST"

103 action="del_actors.php">

104 <input name="da_submit"

105 type="Submit"

106 value="Submit All">

107 </td>

108 </tr>

109 <h2>

110 <tr>

111 <th>DELETE</th>

112 <th align="left">Name</th>

113 <th>Actor GUID</th>

114 <th align="left">IP Address</th>

115 <th align="left">Port</th>

116 <th align="left">Private Key Location</th>

117 <th align="left">MSS User Name</th>

118 <th align="left">Sponsor</th>

119 </tr>

120 <?

121 while ($row= mysql_fetch_array($result))

122 {

123 ?>

124 <tr>

125 <? //List the user names with a checkbox and whether

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 143 ~

126 // he or she is an administrator

127 //Display the current assignments upon opening,

128 // Insert reassignments upon "Submit All". ?>

129 <td align="center" width="100">

130 <input type="checkbox"

131 name="del_actor[]"

132 value="<? echo $row['guid']." "

133 .$row['name']; ?>">

134 </td>

135 <td><? echo $row['name']; ?></td>

136 <td><? echo $row['guid']; ?></td>

137 <td align="right"><? echo $row['ip']; ?></td>

138 <td align="right"><? echo $row['port']; ?></td>

139 <td><? echo $row['private_key_loc']; ?></td>

140 <td><? echo $row['mss_user']; ?></td>

141 <td align ="center">

142 <? $ip_explode = explode(":", $_SERVER['HTTP_HOST']);

143 if($row['sponsor'] == 1 and

144 ($ip_explode[0] == $row['ip']))

145 echo "LOCAL";

146 elseif ($row['sponsor'] == 1)

147 echo "Client";

148 else echo "No"; ?></td>

149 </tr>

150 <?

151 } ?>

152 <tr>

153 <td align="left">

154 <input name="da_submit"

155 type="Submit"

156 value="Submit All">

157 </td>

158 </tr>

159 </form>

160 </h2>

161 <div id="foot">

162

163

164 <? echo "</table>";

165 echo "</div>";

166

167 include('../scripts/footer.php');

168 echo "</div>";

169 ?>

170

171 <?php

172 ///////// END OF PAGE /////////////////

173 }

174 }

175 else

176 {

177

178 include ('../scripts/header.php');

179 ?>

180 <!--Print error message and offer to log in again-->

181 Either you are not allowed to access this page, or your session has expired.

182 Please log in again.

183

184 <?php

185 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 144 ~

del_services.php
 1 <?php

 2 //Purpose: Delete a user service client

 3 //Means: Connect to the Users and Services db's as user "workers"

 4 //Conventions: Notice the "includes embedded within the two main

 5 // if/else statements. "ds" stands for delete service.

 6 //Author: John P. Quan

 7 //Version: 1.0

 8 //Date: 20120105

 9 ?>

 10

 11 <?

 12 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 13 session_cache_expire(20);

 14 session_start();

 15

 16 $inactive = 1200;

 17 if (isset($_SESSION['start']))

 18 {

 19 $session_life = time() - $_SESSION['start'];

 20 if ($session_life > $inactive)

 21 {

 22 header("Location: user_logout.php");

 23

 24 $_SESSION['valid_user'] = 'false';

 25 //CLOSE PREVIOUS SESSION*

 26 $_SESSION;

 27 session_destroy();

 28 }

 29 }

 30 //Set the session start time

 31 $_SESSION['start'] = time();

 32

 33 ///////// START OF PAGE /////////////////

 34

 35 if ($_SESSION['valid_user'] == true

 36 AND $_SESSION['authorized_user'] == true)

 37 {

 38 ?>

 39

 40 <?

 41

 42 include '../scripts/header.php';

 43

 44 echo "<h3><center>Delete Services</center></h3>";

 45 //Display the menu ribbon

 46 include 'menu.php';

 47 //adjusts the header

 48 echo "
";

 49 ?>

 50

 51 <div id="wrap">

 52

 53 <? ///

 54 // Check to see if the user clicked "Submit"

 55 if (isset($_POST['ds_submit']))

 56 {

 57 //Now include User functions

 58 include '../scripts/connect_Users.php';

 59 include 'functions_User.php';

 60 include 'functions_Shell.php';

 61

 62 //Connect to the Users db to delete service_ID from

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 145 ~

 63 // the user and change the service totals

 64 connect_Users();

 65 echo "Deleted the following services:
";

 66 echo "<HR>";

 67

 68 if(isset($_POST['del_service'])) {

 69 echo "For ".$_SESSION['username'].":
";

 70 }

 71 //Get the values from the checkboxes, which are a four-part string.

 72 foreach($_POST['del_service'] as $value) {

 73

 74 $del = explode(" ", $value, 4);

 75

 76 $svc_ID = $del[0];

 77 $svc_path = $del[1];

 78 $svc_filename = $del[2];

 79 $svc_name = $del[3];

 80

 81 echo "<pre> $svc_name</pre>";

 82

 83 //Delete from User_has_Services first

 84 // because of foriegn keys

 85 $query=sprintf("DELETE FROM User_has_Services

 86 WHERE Services_service_ID='%s' AND

 87 User_user_ID='%s'",

 88 mysql_real_escape_string($svc_ID),

 89 mysql_real_escape_string($_SESSION['user_ID']))

 90 or die(mysql_error() . "\n Query29: " . $query);

 91

 92 $result= mysql_query($query);

 93

 94 //Delete the service from Services next

 95 $query=sprintf("SELECT * FROM Services

 96 WHERE service_ID='%s'",

 97 mysql_real_escape_string($svc_ID))

 98 or die(mysql_error() . "\n Query23: " . $query);

 99

100 $result= mysql_query($query);

101

102 while($row= mysql_fetch_array($result)) {

103

104 //Leave the service on the Actor unless no one wants the

105 // service anymore. This is necessary to save the expense

106 // of re-downloading the service.

107 if($row['totals'] < 2) {

108

109 $query=sprintf("DELETE FROM Services

110 WHERE service_ID='%s'",

111 mysql_real_escape_string($svc_ID));

112 $result= mysql_query($query);

113

114 del_downloaded_service($svc_path, $svc_filename);

115 echo "<pre> Removed from the Client.

116 </pre>";

117 }

118 else {

119 decrement_service_totals ($svc_ID);

120 }

121 }

122

123 }

124 //Give administrators the option to delete the service for everyone

125 if($_SESSION['administrator'] == 1

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 146 ~

126 AND isset($_POST['del_all_service'])) {

127 echo "For Everyone:
";

128 }

129 //Get the values from the checkboxes, which are a four-part string.

130 foreach($_POST['del_all_service'] as $value) {

131

132 $del = explode(" ", $value, 4);

133

134 $svc_ID = $del[0];

135 $svc_path = $del[1];

136 $svc_filename = $del[2];

137 $svc_name = $del[3];

138

139 echo "<pre> $svc_name</pre>";

140

141

142 //Delete from User_has_Services first

143 // because of foriegn keys

144 $query=sprintf("DELETE FROM User_has_Services

145 WHERE Services_service_ID='%s'",

146 mysql_real_escape_string($svc_ID))

147 or die(mysql_error() . "\n Query20: " . $query);

148

149 $result= mysql_query($query);

150

151 //Delete the service from Services next

152 $query=sprintf("DELETE FROM Services

153 WHERE service_ID='%s'",

154 mysql_real_escape_string($svc_ID));

155 $result= mysql_query($query);

156

157 //delete the service from the client

158 del_downloaded_service($svc_path, $svc_filename);

159 }

160 //unset the delete actor variables

161 unset_ds_vars();

162 //Get the updated list of user services

163 get_user_services();

164 //Close the connection to the User db

165 mysql_close(connect_Users());

166 }

167 else {

168

169 //Connect to the Services db to get the service information

170 // and to set the value to the service_ID and name.

171 include '../scripts/connect_Services.php';

172 include 'functions_Services.php';

173

174 connect_Services();

175

176 echo "<i>Check</i> the services to delete from this client

177 and <i>Click</i> the \"Submit All\" button.
" ?>

178 <HR>

179 <!--Create a table of current Services-->

180 <table style="margin-left:25px; table-layout: auto;"

181 border="0"

182 cellspacing="10"

183 cellpadding="1"

184 width="80%">

185 <tr>

186 <td align="left">

187 <form id="form_assign"

188 method="POST"

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 147 ~

189 action="del_services.php">

190 <input name="ds_submit"

191 type="Submit"

192 value="Submit All">

193 </td>

194 </tr>

195 <tr>

196 <? //Administrators get an extra "DELETE ALL" column

197 if($_SESSION['administrator'] == 1) { ?>

198 <th valign="top">DELETE MINE</th>

199 <th>DELETE ALL</th>

200 <? }

201 else { ?>

202 <th valign="top">DELETE</th>

203 <? } ?>

204 <th align="left" width ="150">Service</th>

205 <th>Attribute</th>

206 <th align="left">File Name</th>

207 <th>Description</th>

208 </tr>

209 <h2>

210 <?

211

212 //Retrieve the location of the service in the filesystem

213 $query = sprintf("SELECT * FROM view_Attributes_Services")

214 or die(mysql_error() . "\n Query21: " . $query);

215

216 $result = mysql_query($query);

217

218 while ($row= mysql_fetch_array($result))

219 {

220 ?>

221 <tr>

222 <? if(in_array($row['service_ID'], $_SESSION['svc'])) {

223 //Display user's delete option.

224 // This only deletes from the filesystem when the

225 // last user deletes the service. ?>

226 <td align="center" width="100">

227 <input type="checkbox"

228 name="del_service[]"

229 value="<? echo $row['service_ID']." "

230 .directory_tree(

231 $row['attribute_ID'])." "

232 .$row['filename']." "

233 .$row['name']; ?>">

234 </td>

235 <? } else echo "<td> </td>"; ?>

236

237

238 <? if($_SESSION['administrator'] == 1) {

239 //Display a permanent delete option for administrators

240 // This deletes the service regardless of the

241 // service_totals count. ?>

242 <td align="center" width="100"

243 style="background-color:red">

244 <input type="checkbox"

245 name="del_all_service[]"

246 value="<? echo $row['service_ID']." "

247 .directory_tree(

248 $row['attribute_ID'])." "

249 .$row['filename']." "

250 .$row['name']; ?>">

251 </td>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 148 ~

252 <td valign="top">

253 <? echo $row['name']; ?></td>

254 <td valign="top"><i>

255 <? echo $row['attribute']; ?></i></td>

256 <td valign="top">

257 <? echo $row['filename']; ?></td>

258 <td valign="top">

259 <? echo $row['description']; ?></td>

260 </tr>

261

262 <? }

263 if(in_array($row['service_ID'], $_SESSION['svc'])

264 AND $_SESSION['administrator'] == 0

265 OR $_SESSION['administrator'] == 2) { ?>

266 <td valign="top">

267 <? echo $row['name']; ?></td>

268 <td valign="top"><i>

269 <? echo $row['attribute']; ?></i></td>

270 <td valign="top">

271 <? echo $row['filename']; ?></td>

272 <td valign="top">

273 <? echo $row['description']; ?></td>

274 </tr>

275 <? } ?>

276 <?

277 }

278 ?>

279 <tr>

280 <td align="left">

281 <input name="ds_submit"

282 type="Submit"

283 value="Submit All">

284 </td>

285 </tr>

286 </form>

287 </h2>

288 <div id="foot">

289

290 <? echo "</table>";

291 echo "</div>";

292

293 include('../scripts/footer.php');

294 echo "</div>";

295

296 //Close the connection to Services db

297 mysql_close(connect_Services()); ?>

298

299 <?php

300 ///////// END OF PAGE /////////////////

301 }

302 }

303 else

304 {

305

306 include ('../scripts/header.php');

307 ?>

308 <!--Print error message and offer to log in again-->

309 Either you are not allowed to access this page, or your session has expired.

310 Please log in again.

311

312 <?php

313 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 149 ~

del_users.php
 1 <?php

 2 //Purpose: Delete a user or administrator

 3 //Means: Connect to the Users.User table as user "workers"

 4 //Conventions: du stands for "delete actor"

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

 10 <?

 11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14

 15 $inactive = 1200;

 16 if (isset($_SESSION['start']))

 17 {

 18 $session_life = time() - $_SESSION['start'];

 19 if ($session_life > $inactive)

 20 {

 21 header("Location: user_logout.php");

 22

 23 $_SESSION['valid_user'] = 'false';

 24 //CLOSE PREVIOUS SESSION*

 25 $_SESSION;

 26 session_destroy();

 27 }

 28 }

 29 //Set the session start time

 30 $_SESSION['start'] = time();

 31

 32 ///////// START OF PAGE /////////////////

 33

 34 if ($_SESSION['valid_user'] == true

 35 AND $_SESSION['administrator'] == 1)

 36 {

 37 ?>

 38

 39 <?

 40 include '../scripts/connect_Users.php';

 41 include '../scripts/header.php';

 42 include 'functions_User.php';

 43

 44 connect_Users();

 45

 46 echo "<h3><center>Delete Users</center></h3>";

 47 //Display the menu ribbon

 48 include 'menu.php';

 49 //adjusts the header

 50 echo "
";

 51 ?>

 52

 53 <div id="wrap">

 54

 55 <? ///

 56 // Check the user name and password after "Submit"

 57 if (isset($_POST['du_submit']))

 58 {

 59 echo "Deleted the following users:
";

 60 echo "<HR>";

 61 //Return a count of deleted actors.

 62 foreach($_POST['del_user'] as $value) {

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 150 ~

 63

 64 $del = explode(" ", $value, 2);

 65

 66 echo "<pre> $del[1]</pre>";

 67

 68 //Delete the User from User_has_Services first

 69 // because of foreign keys

 70 $query=sprintf("DELETE FROM User_has_Services

 71 WHERE User_user_ID='%s'",

 72 mysql_real_escape_string($del[0]));

 73 $result= mysql_query($query);

 74

 75 //Delete the User from Actor_has_User next

 76 // because of foreign keys

 77 $query=sprintf("DELETE FROM Actor_has_User

 78 WHERE User_user_ID='%s'",

 79 mysql_real_escape_string($del[0]));

 80 $result= mysql_query($query);

 81

 82 //Delete from User last

 83 $query=sprintf("DELETE FROM User

 84 WHERE user_ID='%s'",

 85 mysql_real_escape_string($del[0]));

 86 $result= mysql_query($query);

 87 }

 88 //unset the delete actor variables

 89 unset_du_vars();

 90 mysql_close(connect_Users());

 91 }

 92 else {

 93

 94 // Retrieve the User List

 95 $query = "SELECT * FROM User";

 96 $result = mysql_query($query);

 97

 98 echo "<i>Check</i> the users to delete

 99 and <i>Click</i> the \"Submit All\" button.
" ?>

100 <HR>

101 <!--Create a table of current Services-->

102 <table style="margin-left:25px; table-layout: auto;"

103 border="0"

104 cellspacing="10"

105 cellpadding="1" >

106 <tr>

107 <td align="left">

108 <form id="form_assign"

109 method="POST"

110 action="del_users.php">

111 <input name="du_submit"

112 type="Submit"

113 value="Submit All">

114 </td>

115 </tr>

116 <h2>

117 <tr>

118 <th>DELETE</th>

119 <th align="left">Name</th>

120 <th>User ID</th>

121 <th align="left">GUID</th>

122 <th align="left">Administrator</th>

123 </tr>

124 <?

125 while ($row= mysql_fetch_array($result))

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 151 ~

126 {

127 ?>

128 <tr>

129 <? //List the user names with a checkbox and whether

130 // he or she is an administrator.

131 //Display the current assignments upon opening,

132 // Insert reassignments upon "Submit All". ?>

133 <td align="center" width="100">

134 <input type="checkbox"

135 name="del_user[]"

136 value="<? echo $row['user_ID']." "

137 .$row['name']; ?>">

138 </td>

139 <td><? echo $row['name']; ?></td>

140 <td align="center"><?echo $row['user_ID']; ?></td>

141 <td align="left"><? echo $row['guid']; ?></td>

142 <td align ="center">

143 <? if ($row['administrator'] == 0) echo 'No';

144 elseif ($row['administrator'] == 1) echo 'LOCAL';

145 elseif ($row['administrator'] == 2) echo'Client';

146 else echo 'User type unknown!

147 Contact your Local Administrator.'; ?></td>

148 </tr>

149 <div id="foot">

150 <?

151 } ?>

152 <tr>

153 <td align="left">

154 <input name="du_submit"

155 type="Submit"

156 value="Submit All">

157 </td>

158 </tr>

159 </form>

160 </h2>

161 <div id="foot">

162

163 <? echo "</table>";

164 echo "</div>";

165

166 include('../scripts/footer.php');

167 echo "</div>";

168 ?>

169

170 <?php

171 ///////// END OF PAGE /////////////////

172 }

173 }

174 else

175 {

176

177 include ('../scripts/header.php');

178 ?>

179 <!--Print error message and offer to log in again-->

180 Either you are not allowed to access this page, or your session has expired.

181 Please log in again.

182

183 <?php

184 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 152 ~

download_service.php
 1 <?php

 2 //Purpose: Get a service from an authorized server as an authorized

 3 // user on an authorized client machine.

 4 //Means: Connect to the Services database as user "workers"

 5 // Use functions match_service_attributes()

 6 // service_tree()

 7 //Conventions:

 8 //Author: John P. Quan

 9 //Version: 1.0

 10 //Date: 20120105

 11 ?>

 12

 13 <? //

 14 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 15 session_cache_expire(20);

 16 session_start();

 17

 18 $inactive = 1200;

 19 if (isset($_SESSION['start'])) {

 20 $session_life = time() - $_SESSION['start'];

 21 if ($session_life > $inactive) {

 22 header("Location: user_logout.php");

 23

 24 $_SESSION['valid_user'] = 'false';

 25 //CLOSE PREVIOUS SESSION*

 26 $_SESSION;

 27 session_destroy();

 28 }

 29 }

 30 //Set the session start time

 31 $_SESSION['start'] = time();

 32

 33 ///////// START OF PAGE /////////////////

 34

 35 if ($_SESSION['valid_user'] == true

 36 AND $_SESSION['authorized_user'] == true)

 37 {

 38 ?>

 39 <?php

 40 //choose the service to download and

 41 // add to the user's list

 42 include '../scripts/connect_Users.php';

 43 include '../scripts/header.php';

 44 include 'functions_User.php';

 45 include 'functions_Shell.php';

 46 include '../scripts/constants.php';

 47

 48 connect_Users();

 49

 50 echo "<h3><center>Download Complete</center></h3>";

 51

 52 //Display the menu ribbon

 53 include 'menu.php';

 54 //adjusts the header

 55 echo "
";

 56 ?>

 57

 58 <div id="wrap">

 59

 60 <? ///

 61 //If the remote user and host exist in the Actor table,

 62 // then add the service to the user, increment the service

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 153 ~

 63 // totals, and download the service

 64 if(actor_ip_exists($_SERVER['HTTP_HOST'])

 65 AND actor_ip_exists($_SERVER['REMOTE_ADDR'])) {

 66

 67 //Increment the total number of users using the service

 68 // first due to foriegn key constraints

 69 increment_service_totals(

 70 $_SESSION['svc_download']);

 71 // Then add the service to the user's list

 72 // of services.

 73 add_user_service(

 74 $_SESSION['svc_download']);

 75 ?>

 76 <hr>

 77 <table style="margin-left:25px; table-layout: auto;"

 78 border="0"

 79 cellspacing="10"

 80 cellpadding="1">

 81 <h2>

 82 <tr>

 83 <th>Location</th>

 84 <th>File</th>

 85 </tr>

 86 </h2>

 87 <tr>

 88 <td>

 89 <? echo $_SESSION['svc_path']; ?>

 90 </td>

 91 <td>

 92 <? echo $_SESSION['svc_filename']; ?>

 93 </td>

 94 </tr>

 95 <?

 96 ////Download the service to the client.

 97 download_service(

 98 $_SESSION['svc_path'],

 99 $_SESSION['svc_filename']);

100 //Compare the shasums to ensure the download was successful

101 if(compare_shasum($_SESSION['svc_path'],

102 $_SESSION['svc_filename'])) {

103 echo "Download Successful!
<HR>";

104 }

105 else {

106 echo "Downloaded SHA sum does

107 not match Sponsor's SHA Sum!

108 Download FAILED!
<HR>";

109 del_downloaded_service($_SESSION['svc_path'],

110 $_SESSION['svc_filename']);

111 }

112 }

113 else {

114 echo "

115 Service Downloading Disabled. You are not downloading from

116 an authorized address.

117 Please contact your adminstrator.

118 <color>";

119 }

120 //update the user services list in session

121 get_user_services();

122 ?>

123 <div id="foot">

124 </table>

125

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 154 ~

126 <?php

127 ///////// END OF PAGE /////////////////

128 }

129 else

130 {

131 //time expired or access denied; log in again

132 include ('../scripts/header.php');

133 ?>

134 Either you are not allowed to access this page, or your session has expired.

135 Please log in again.

136

137 <?php

138 } ?>

139 <?

140 echo "</div>";

141 include('../scripts/footer.php');

142 echo "</div>";

143 ?>

footer.php
1 <end><p1>

2
Web Administrator:

3
John Quan</p1></end>

4 </body>

5 </html>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 155 ~

functions_php.php
 1 <?php

 2 //Purpose: Extended or general-purpose PHP functions

 3 //Means:

 4 //Conventions: gen_uuid() generates a GUID

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8 ?>

 9

10 <? ///////////////////////// GEN_GUID //////////////////////////////////////

11 // Generate a guid to distinguish objects

12 function gen_uuid() {

13 return sprintf('%04x%04x-%04x-%04x-%04x-%04x%04x%04x',

14 // 32 bits for "time_low"

15 mt_rand(0, 0xffff), mt_rand(0, 0xffff),

16

17 // 16 bits for "time_mid"

18 mt_rand(0, 0xffff),

19

20 // 16 bits for "time_hi_and_version",

21 // four most significant bits holds version number 4

22 mt_rand(0, 0x0fff) | 0x4000,

23

24 // 16 bits, 8 bits for "clk_seq_hi_res",

25 // 8 bits for "clk_seq_low",

26 // two most significant bits holds zero and one for variant DCE1.1

27 mt_rand(0, 0x3fff) | 0x8000,

28

29 // 48 bits for "node"

30 mt_rand(0, 0xffff), mt_rand(0, 0xffff), mt_rand(0, 0xffff)

31);

32 }

33 ?>

34

35 <?php ////////////// KEY_ARRAY_SEARCH //////////////////////////////////////

36 //Searches for even a partial match.

37 // e.g., searching for 199.165.76.84 in http://199.165.76.84:11080/orca

38 // returns the key it was found in, -1 if not found

39 function key_array_search($needle = null, $haystack_array = null, $skip = 0)

40 {

41 if($needle == null || $haystack_array == null)

42 die('$needle and $haystack_array are mandatory');

43 foreach($haystack_array as $key => $eval)

44 {

45 if($skip != 0)$eval = substr($eval, $skip);

46 if(stristr($eval, $needle) !== false) return $key;

47 }

48 return FALSE;

49 }

50 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 156 ~

functions_services.php
 1 <?php

 2 //Purpose: Service related functions

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6

 7 include_once '../scripts/constants.php';

 8 include_once 'functions_Shell.php';

 9

 10 ?>

 11

 12 <? /////////////////// SERVICE_TREE /////////////////////////////

 13 //breadth-first recursion through Services.Attributes

 14 // Print the tree level and attribute

 15 function service_tree($ID, $level) {

 16

 17 $query = sprintf("SELECT attribute_ID,

 18 attribute,

 19 description,

 20 parent_ID

 21 FROM Attributes

 22 WHERE parent_ID=$ID")

 23 or die(mysql_error() . "\n Query30: " . $query);

 24

 25 $result = mysql_query($query);

 26 while ($row = mysql_fetch_array($result)) {

 27 ?>

 28 <table border="0" cellspacing="0" cellpadding="4">

 29 <tr>

 30 <td width="200">

 31 <? //add [one space]*[attribute level]

 32 // for readability

 33 for ($i = 0; $i < $level; $i++) {

 34 echo " ";

 35 }

 36 //print the level, attribute name, and description for each

 37 // attribute

 38 echo "{".$level."} ".$row['attribute'];

 39 ?>

 40 </td>

 41 <td><div style="border: solid 0 #060;

 42 border-color: rgb(248, 180, 66);

 43 border-left-width:2px;

 44 padding-left:0.5ex">

 45 <? echo $row['description']; ?>

 46

 47 </div>

 48 </td>

 49 </tr></table>

 50 <?

 51 //if the attribute has services, print them

 52 match_service_attributes($row['attribute_ID']);

 53 //recurse through the attribute tree and add a level each time

 54 service_tree($row['attribute_ID'], $level + 1);

 55 }

 56 }

 57 ?>

 58

 59 <? /////////////////// CATEGORY_TREE /////////////////////////////

 60 //breadth-first recursion through Services.Attributes

 61 // Print the tree level, attribute, and checkbox

 62 function category_tree($ID, $level) {

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 157 ~

 63

 64 $query = sprintf("SELECT attribute_ID,

 65 attribute,

 66 description,

 67 parent_ID

 68 FROM Attributes

 69 WHERE parent_ID=$ID")

 70 or die(mysql_error() . "\n Query22: " . $query);

 71

 72 $result = mysql_query($query);

 73 while ($row = mysql_fetch_array($result)) {

 74 ?>

 75 <table border="0" cellspacing="0" cellpadding="4">

 76 <tr>

 77 <td width="200">

 78 <? //add [one space]*[attribute level]

 79 // for readability

 80 for ($i = 0; $i < $level; $i++) {

 81 echo " ";

 82 }

 83 //print the level, attribute name, and description for each

 84 // attribute

 85 echo "{".$level."} ".$row['attribute'];

 86 ?>

 87 <? //List the user names with a checkbox and whether

 88 // he or she is an administrator

 89 //Display the current assignments upon opening,

 90 // Insert reassignments upon "Submit All".

 91 echo display_category_checkbox ($row['attribute_ID']); ?>

 92 </td>

 93 <td><div style="border: solid 0 #060;

 94 border-color: rgb(248, 180, 66);

 95 border-left-width:2px;

 96 padding-left:0.5ex">

 97 <? echo $row['description']; ?>

 98

 99 </div>

100 </td>

101 </tr></table>

102 <?

103 //if the attribute has services, print them

104 // match_service_attributes($row['attribute_ID']);

105 //recurse through the attribute tree and add a level each time

106 category_tree($row['attribute_ID'], $level + 1);

107 }

108 }

109 ?>

110

111 <? ////////////// DISPLAY_CATEGORY_CHECKBOX ///////////////////////

112 //Return matching services for an attribute

113 function display_category_checkbox ($attribute_ID) {

114

115 //find out which attributes have associated services

116 $query = sprintf("SELECT Services_service_ID

117 FROM Attributes_have_Services

118 WHERE Attributes_attribute_ID=$attribute_ID");

119 $result = mysql_query($query);

120

121 while ($row = mysql_fetch_array($result)) {

122 //create a table for each service to display

123 // below the attribute

124 return "<input type=\"checkbox\"

125

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 158 ~

126 name=\"cc_category[]\"

127 value=\"".$attribute_ID."\" />";

128 }

129 return NULL;

130 }

131 ?>

132

133 <? ////////////// MATCH_SERVICE_ATTRIBUTES ///////////////////////

134 //print matching services for an attribute

135 function match_service_attributes($ID)

136 {

137 //find out which attributes have associated services

138 $query = sprintf("SELECT Services_service_ID

139 FROM Attributes_have_Services

140 WHERE Attributes_attribute_ID=$ID");

141 $result = mysql_query($query);

142

143 while ($row = mysql_fetch_array($result)) {

144 //create a table for each service to display

145 // below the attribute ?>

146 <table border="0" cellspacing="0" cellpadding="4">

147 <tr>

148 <td valign="top">

149 <?

150 //print each matching service

151 display_service($row['Services_service_ID']);

152

153 //if the user clicks the service_ID, load SESSION

154 // svc_download with the service_ID

155 // svc_path with the filesystem full path

156 // svc_filename with Services.filename

157 if(isset($_SESSION['svc_download']) and

158 sending_geni_heartbeats()) {

159 submit_download($_SESSION['svc_download']);

160

161 //get the file size to give the client some idea

162 // of how long the download will take.

163 $svc_path = $_SESSION['svc_path'];

164 $svc_filename = $_SESSION['svc_filename'];

165 $file_size = `ls -hal $svc_path \

166 | grep $svc_filename \

167 | awk '{print $5}'`;

168 $message = "Downloading: $svc_filename\nSize: $file_size";

169 //format for JavaScript

170 $message = preg_replace("/\r?\n/", "\\n",

171 addslashes($message));

172 //display the alert box with filename and size

173 echo "<script type=\"text/javascript\">\n";

174 echo " alert(\"$message\");\n";

175 echo "</script>\n\n";

176

177 //redirect to download_service.php

178 echo '<META HTTP-EQUIV="Refresh"

179 Content="0;

180 URL=download_service.php">';

181 exit;

182 ?>

183

184 <?

185 }

186 ?>

187 </td>

188 </tr>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 159 ~

189 </table>

190 <?

191 }

192 }

193 ?>

194

195 <?/////////////// DISPLAY_SERVICE /////////////////////////////////

196 //Display the service that matches the service_ID

197 function display_service($service_ID) {

198

199 //pull from the Services database

200 $query = sprintf("SELECT service_ID,

201 name,

202 filename,

203 description,

204 developer,

205 publisher

206 FROM Services

207 WHERE service_ID=$service_ID");

208 $result = mysql_query($query);

209

210 //print the service as a table. This table is uniquely formatted

211 ?>

212 <table style="font-family: monospace;"

213 border="0"

214 cellspacing="10"

215 cellpadding="4" >

216 <tr>

217 <th></th>

218 <th></th>

219 <th align="left">Service</th>

220 <th align="left">Description</th>

221 <th align="left">Developer</th>

222 <th align="left">Publisher</th>

223 </tr>

224 <?

225 while ($row = mysql_fetch_array($result)) {

226 ?>

227 <tr>

228

229 <?

230 $printed = FALSE;

231 //If the service has not been printed already,

232 // print the INSTALLED service array

233 foreach ($_SESSION['svc'] as $svc_ID) {

234

235 //if the service_ID matches the one in the row

236 if (!$printed AND $svc_ID == $row['service_ID']) {

237 ?>

238

239 <td width="190">

240 <? //Placeholder cell ?>

241 </td>

242

243 <td valign="top" align="center" width="100">

244 Installed

245 </td>

246

247 <td valign="top" width="100">

248 <? echo $row['name']; ?>

249 </td>

250

251 <td valign="top" width="700">

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 160 ~

252 <? echo $row['description']; ?>

253 </td>

254

255 <td valign="top" width="125">

256 <? echo $row['developer']; ?>

257 </td>

258

259 <td valign="top" width="150">

260 <? echo $row['publisher']; ?>

261 </td>

262 <? //The table and row either end here or in

263 // if(!printed) below ?>

264 </tr>

265 </table>

266

267 <?

268 //set $printed to true, otherwise this prints

269 // the same service times the number of total

270 // services the user has

271 $printed = TRUE;

272 }

273 }

274 //if it is not printed, then it is not installed

275 // Give the user the option to download the service

276 if (!$printed) {

277

278 ?>

279 <td width="190">

280 <? //Placeholder ?>

281 </td>

282 <? //Display the service_ID in the submit button

283 // as the value. ?>

284 <td valign="top" align="center" width="100">

285 <form id="form_download"

286 method="POST"

287 action="choose_service.php">

288 <input type="submit"

289 value="<? //When clicked, set the button text to

290 // "Downloading"

291 if(isset($_SESSION['svc_path'])) {

292 echo "Downloading";

293 }

294 else echo $row['service_ID']; ?>"

295 name="svc_download">

296 </form>

297 </td>

298

299 <td valign="top" width="100">

300 <? echo $row['name']; ?>

301 </td>

302

303 <td valign="top" width="700">

304 <? echo $row['description']; ?>

305 </td>

306

307 <td valign="top" width="125">

308 <? echo $row['developer']; ?>

309 </td>

310

311 <td valign="top" width="150">

312 <? echo $row['publisher']; ?>

313 </td>

314 </tr>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 161 ~

315 </table>

316 <? //Now this service's table is definitely printed,

317 // if it exists

318 $printed = TRUE;

319 }

320 }

321 }

322 ?>

323

324 <? //////////////// DIRECTORY_TREE ////////////////////////////////////

325 //Depth-first recursion to find the full path of the file

326 // based on the MSS_SERVICES and it's attribute description

327 function directory_tree($attribute_ID, $full_path = '') {

328

329 $query = sprintf("SELECT attribute_ID,

330 attribute,

331 parent_ID

332 FROM Attributes

333 WHERE attribute_ID=$attribute_ID");

334 $result = mysql_query($query);

335 $row= mysql_fetch_array($result);

336 //This recurses backwards to the top of the tree, so

337 // put the next attribute BEFORE the last.

338 if($attribute_ID == NULL) {

339 $temp = $row['attribute']."/".$full_path;

340 $full_path = MSS_SERVICES.$temp;

341 return (string)$full_path;

342 }

343 else {

344 $temp = $row['attribute']."/".$full_path;

345 $full_path = $temp;

346 return directory_tree($row['parent_ID'], $full_path);

347 }

348 }

349 ?>

350 <? /////////////////// SUBMIT_DOWNLOAD ///////////////////////////////

351 //load SESSION svc_path with the full path name

352 function submit_download($service_ID) {

353

354 //match the attribute to the service

355 $query = sprintf("SELECT service_ID,

356 attribute_ID,

357 filename,

358 shasum

359 FROM view_Attributes_Services

360 WHERE service_ID=$service_ID");

361 $result = mysql_query($query);

362 while($row = mysql_fetch_array($result)) {

363 //Recursive directory tree + filename = full path

364 $_SESSION['svc_path'] =

365 directory_tree($row['attribute_ID'], "");

366 $_SESSION['svc_filename'] = $row['filename'];

367 $_SESSION['svc_shasum'] = $row['shasum'];

368 }

369 }

370 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 162 ~

functions_shell.php
 1 <?php

 2 //Purpose: Runs shell scripts on the host

 3 //Means: uses the backtick operator as user 'www-data' (The default

 4 // apache user) on the host, scp's and ssh's as user MSS_USER

 5 // on the client

 6 //Conventions: THIS RUNS AS THE APACHE USER 'www-data', SO

 7 // ASSUMING MSS_USER = 'workers'

 8 // ON THE SERVER:

 9 // -change www-data's default shell to bash

 10 // in /etc/passwd

 11 // -add these groups:

 12 // usermod -a -G workers www-data

 13 // (allows www-data to run the shell scripts)

 14 // usermod -a -G mss www-data

 15 // (all MSS users belong to group mss)

 16 // -set the UID/GID on /home/work/MSS directory to:

 17 // chmod ug+s /home/work/MSS

 18 // chmod 0770 /home/work/MSS

 19 // -add the private key and change ownership to www-data, e.g.,

 20 // -copy the Eucalyptus private key into the /home/workers/.ssh

 21 // directory, then:

 22 // chown www-data:www-data barrowkey.private

 23 // chmod 0600 barrowkey.private

 24 // ON A CLIENT EUCALYPTUS INSTANCE (Ubuntu 11.04):

 25 // -as root...

 26 // -add group mss

 27 // addgroup mss

 28 // usermod -a -G mss ubuntu

 29 // -add directory /usr/share/MSS

 30 // mkdir /usr/share/MSS

 31 // chown ubuntu:mss /usr/share/MSS

 32 // ON A PHYSICAL CLIENT:

 33 // -add group mss

 34 // addgroup mss

 35 // -add user workers

 36 // adduser workers

 37 // usermod -a -G mss workers

 38 // -add directory /usr/share/MSS

 39 // mkdir /usr/share/MSS

 40 // chown workers:mss /usr/share/MSS

 41 // ON A PHYSICAL SERVER FOR A EUCALYPTUS INSTANCE:

 42 // -for instance, on the MSS "Add Clent" webpage, add:

 43 // User Name [unique name, such as its IP, or IP-PORT]

 44 // IP

 45 // PORT

 46 // PRIVATE KEY [the eucalyptus key, such as

 47 // /home/orca/mykey.private]

 48 // MSS USER [ubuntu]

 49 // ON A PHYSICAL SERVER:

 50 // su workers

 51 // -use passwordless ssh by placing the public key in the

 52 // authorized_users file. For instance:

 53 // ssh-keygen

 54 // ssh-copy-id ‘-p XXXX -i ~/.ssh/id_dsa.pub workers@client.ip.’

 55 // (the public key must be in /home/workers/.ssh/authorized_keys)

 56 //Author: John P. Quan

 57 //Version: 1.0

 58 //Date: 20120105

 59 ?>

 60

 61 <?

 62 include_once 'functions_php.php';

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 163 ~

 63 include_once 'functions_User.php';

 64 ?>

 65

 66 <? ///////////////// SENDING_GENI_HEARTBEATS ///////////////////////////////

 67 //wget the ORCA Registry and check to see if the MSS_PARENT (sponsor)

 68 // is in it.

 69 // return TRUE || FALSE

 70 function sending_geni_heartbeats() {

 71

 72 //sh_check_heartbeats wgets the ORCA Actor Registry, greps for

 73 // url: [url of all actors]

 74 // amdiff: [if this is > 0, you're not actively donating

 75 // and returns an array([0]=> url_0

 76 // [1]=> amdiff_0

 77 // [2]=> url_1

 78 // [3]=> amdiff_1 ...)

 79 $heartbeats = GENI_HEARTBEATS;

 80 $script = MSS_HOME.MSS_SCRIPTS;

 81

 82 //Download the ORCA Actors Registry

 83 // amdiff is greater than 0 if the actor is NOT donating,

 84 // or if the actor does not exist on the page.

 85 $h_arr = explode('/', $heartbeats);

 86

 87 //Get the page name at the end of GENI_HEARTBEATS. As of

 88 // this writing, the name of the page is "actors.jsp"

 89 $page = end($h_arr);

 90

 91 //Run the shell script to get all actors

 92 // and check for sponsor's heartbeats

 93 $data = `/bin/bash $script/sh_check_heartbeats $heartbeats $page`;

 94 $actors = explode(" ", $data);

 95

 96 //In HTTP_HOST IP:PORT, exclude the port because the host is

 97 // serving the GENI control framework on a different one, so

 98 // it will not find a match with HTTP_HOST in the Actors Registry

 99 // e.g., GENI CF: 11080, MSS: 12080

100 $ip = explode(":", $_SERVER['HTTP_HOST']);

101

102 //I know I (the sponsor) am sending heartbeats

103 // because I $found myself in the $actors array...

104 $found = key_array_search($ip[0], $actors);

105

106 if($found) {

107 //...and the next value in $found + 1 equals 0...

108 if($actors[$found + 1] == 0) {

109 //...so the child (user) can download the service

110 return TRUE;

111 }

112 //...else I must not be sending heartbeats, so the user cannot

113 // download new services.

114 else {

115 echo "

116 Service Downloading Disabled. No heartbeats present.

117 Please contact your adminstrator.

118 <color>";

119 return FALSE;

120 }

121 }

122 //...else I am not in the Actor Registry, so the user cannot

123 // download new services.

124 else {

125 echo "

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 164 ~

126 Service Downloading Disabled. No heartbeats present.

127 Please contact your adminstrator.

128 <color>";

129 return FALSE;

130 }

131 }

132 ?>

133

134 <?/////////////// DOWNLOAD_SERVICE ///////////////////////////////////

135 // Download the service to the client.

136 function download_service($svc_path, $svc_filename) {

137

138 //Only download if the service does not exist on the client.

139 // We can do this because new releases of a service will be

140 // named differently.

141 $command = "ls -hal $svc_path

142 | grep $svc_filename

143 | awk '{print $5}'";

144

145 $return = send_client_command('ssh', $command);

146

147 //file_size returns the file size or a single character. I was

148 // not able to figure out what this character is in a timely

149 // manner.

150 if(strlen($return) < 2) {

151

152 //Make the MSS directory in MSS_SERVICES if it doesn't exist

153 $command = "mkdir -p $svc_path";

154 send_client_command('ssh', $command);

155

156 //Rsync the file to the client

157 send_client_command('file', NULL, $svc_path, $svc_filename);

158 }

159 else echo "File $svc_filename previously installed. ";

160 }

161 ?>

162

163 <? /////////////////// DOWNLOAD_SERVICE ///////////////////////////////////

164 // Download the service to the client.

165 function download_category($dir_path) {

166

167 //Prepare to take the last directory name off of

168 // the string

169 $tmp = explode("/", $dir_path);

170 //The dir_path ends in a "/", so you have to pop

171 // it once for the copy directory...

172 array_pop($tmp);

173 //Put the shortened path back together

174 $copy_this_dir = implode("/", $tmp);

175 //...and a second time for the copy location

176 $category = array_pop($tmp);

177 //Put the shortened path back together

178 $loc = implode("/", $tmp);

179

180 //Echo the results

181 echo "Copied the ".$category." category to ".$loc."
";

182

183 //Make the MSS directory in MSS_SERVICES if it doesn't exist

184 $command = "mkdir -p ".$dir_path;

185

186 send_client_command('ssh', $command);

187

188 //Recursive secure copy the directory to the client

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 165 ~

189 send_client_command('dir', NULL, $loc, $copy_this_dir);

190 }

191 ?>

192

193 <? /////////////////// COMPARE_SHASUMS //////////////////////////////

194 // Compare the SHASUM on the client to the session svc_shasum.

195 function compare_shasum($svc_path, $svc_filename) {

196

197 //Get the shasum from the client

198 $command = "shasum ".$svc_path.$svc_filename;

199 $shasum = send_client_command('ssh', $command);

200

201 if(strcmp($shasum, $_SESSION['svc_shasum'])) return TRUE;

202 else return FALSE;

203 }

204 ?>

205

206 <? /////////////////// DEL_DOWNLOADED_SERVICE //////////////////////////////

207 // Delete the downloaded service from the client.

208 function del_downloaded_service($svc_path, $svc_filename) {

209

210 //Remove the service from the client

211 $command = "rm ".$svc_path.$svc_filename;

212 send_client_command('ssh', $command);

213 }

214 ?>

215

216 <? ///////////////// SEND_CLIENT_COMMAND ///////////////////////////////////

217 //Type is either 'rsync' or the default 'ssh'

218 // ssh commands require ('ssh', [command])

219 // rsync commands require ('file', NULL, path, file_to_copy) or

220 // rsync commands require ('dir', NULL, path, dir_to_copy)

221 //Use SSH to connect rsync and download the service because this

222 // is often the only port open for Eucalyptus instances (VMs).

223 function send_client_command($c_type='ssh',

224 $command=NULL,

225 $path=NULL,

226 $copy_this=NULL) {

227

228 $script = MSS_HOME.MSS_SCRIPTS;

229

230 //The MSS user that performs MSS transactions. For instance,

231 // physical clients may add user 'workers', but Eucalyptus instances

232 // often require user 'root' or 'ubuntu' to log in.

233 $user=(string)get_client_mss_user();

234

235 //The address you are sending the service to...

236 $address=(string)$_SERVER['REMOTE_ADDR'];

237

238 //... and the port

239 $port= (string)get_client_port();

240

241 //...and use the client's private key.

242 $private_key = (string)get_client_private_key();

243

244

245 //Run ssh commands

246 if($c_type === 'ssh') {

247

248 //Add quotes around the command for clarity...

249 $ssh_command = "\"".$command."\"";

250

251 //...and send using the BASH script sh_ssh_command

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 166 ~

252 $data=`/bin/bash $script/sh_ssh_command $user \

253 $address \

254 $port \

255 $private_key \

256 $ssh_command`;

257 return $data;

258 }

259 //Run rysnc to download a service to the client

260 elseif($c_type === 'file') {

261

262 $full_path = $path.$copy_this;

263 $loc = $path.".";

264

265 //...and send using the BASH script sh_rsync_command

266 $data=`/bin/bash $script/sh_rsync_command $user \

267 $address \

268 $port \

269 $private_key \

270 $full_path $loc`;

271 return $data;

272 }

273 //Run rsync to download a directory to the client

274 elseif($c_type === 'dir') {

275

276 //This is the full path of the directory

277 $full_path = $copy_this;

278 //This is the directory just above the one you

279 // want to copy

280 $loc = $path;

281

282 //...and send using the BASH script sh_rsync_command

283 $data=`/bin/bash $script/sh_rsync_command $user \

284 $address \

285 $port \

286 $private_key \

287 $full_path $loc`;

288 return $data;

289 }

290 else {

291 echo "Type must be 'file', 'dir', or 'ssh'.
";

292 return -1;

293 }

294 }

295 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 167 ~

functions_User.php
 1 <?php

 2 //Purpose: User related functions

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6

 7 include_once '../scripts/connect_Users.php';

 8 include_once "../scripts/connect_orca.php";

 9

 10 connect_Users();

 11 ?>

 12

 13 <? //////////////// AUTHORIZED_USER ////////////////////////////////////

 14 //Compare the session actors array with the server IP

 15 // to determine whether the user can access the website

 16 function check_authorized_user() {

 17

 18 //Allows for special case of no actor/user assignments,

 19 // such as when MSS is first installed.

 20 //This always allows local administrators in to the sponsor, even

 21 // when no users are assigned to actors.

 22 //The site will not allow access for others

 23 // unless a local administrator assigns the user to the sponsor and

 24 // at least one actor.

 25 if($_SESSION['administrator'] == 1) {

 26 $_SESSION['authorized_user'] = "true";

 27

 28 //See if the client IP is a sponsor to set whether the

 29 // administrator can download to it. The local admin can

 30 // always choose to make this IP a sponsor, and the act of

 31 // doing so cements which IPs the admin wants to allow to download.

 32 $ip_explode = explode(":", $_SERVER['REMOTE_ADDR']);

 33

 34 foreach($_SESSION['actors'] as $value) {

 35

 36 $query = sprintf("SELECT sponsor,

 37 ip,

 38 guid

 39 FROM Actor

 40 WHERE ip='%s'

 41 AND guid='%s'",

 42 mysql_real_escape_string($ip_explode[0]),

 43 mysql_real_escape_string($value))

 44 or die(mysql_error() . "\n Query7: " . $query);

 45 $result = mysql_query($query);

 46

 47 //If the server IP address is in the user's assigned

 48 // session actors, return TRUE, else return FALSE.

 49 while($actor = mysql_fetch_array($result)) {

 50

 51 //Find out if one of the authorized sponsors is this server

 52 if($actor['sponsor'] == 1

 53 and authorized_sponsor($actor['guid'])) {

 54 $_SESSION['authorized_sponsor'] = "true";

 55 }

 56 }

 57 }

 58 return TRUE;

 59 }

 60 else {

 61

 62 //The person who logged on is not an adminstrator, but

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 168 ~

 63 // he or she must be a client administrator or a user, so

 64 // find out if he or she is allowed access.

 65 $ip_explode = explode(":", $_SERVER['HTTP_HOST']);

 66

 67 foreach($_SESSION['actors'] as $value) {

 68

 69 $query = sprintf("SELECT sponsor,

 70 ip,

 71 guid

 72 FROM Actor

 73 WHERE ip='%s'

 74 AND guid='%s'",

 75 mysql_real_escape_string($ip_explode[0]),

 76 mysql_real_escape_string($value))

 77 or die(mysql_error() . "\n Query31: " . $query);

 78 $result = mysql_query($query);

 79

 80 //If the server IP address is in the user's assigned

 81 // session actors, return TRUE, else return FALSE.

 82 while($actor = mysql_fetch_array($result)) {

 83

 84 //Find out if one of the authorized sponsors is this server

 85 if($actor['sponsor'] == 1

 86 and authorized_sponsor($actor['guid'])) {

 87 $_SESSION['authorized_sponsor'] = "true";

 88 }

 89

 90 //See if the user is authorized on this actor

 91 $query = sprintf("SELECT Actor_guid,

 92 User_user_ID

 93 FROM Actor_has_User

 94 WHERE Actor_guid='%s'",

 95 mysql_real_escape_string($actor['guid']))

 96 or die(mysql_error() . "\n Query8: " . $query);

 97 $result = mysql_query($query);

 98

 99 while($A_h_U = mysql_fetch_array($result)) {

100

101 if($A_h_U['User_user_ID'] == $_SESSION['user_ID']) {

102 $_SESSION['authorized_user'] = "true";

103

104 return TRUE;

105 }

106 }

107 }

108 }

109 $_SESSION['authorized_user'] = "false";

110 return FALSE;

111 }

112 }

113 ?>

114

115 <? function authorized_sponsor($guid) {

116

117 //Close the Users connection so authorized_sponsor() can

118 // connect to the GENI db

119 mysql_close(connect_Users());

120

121 //If the actor guid matches a sponsor guid

122 // return TRUE, else return FALSE.

123

124 connect_orca();

125

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 169 ~

126 $query = sprintf("SELECT act_guid

127 FROM Actors

128 WHERE act_guid='%s'",

129 mysql_real_escape_string($guid))

130 or die(mysql_error() . "\n Query18: " . $query);

131 $geni_result = mysql_query($query);

132

133 while($geni_row = mysql_fetch_array($geni_result)) {

134

135 //Find out if one of the authorized sponsors is this server

136 if(isset($geni_row['act_guid'])) {

137

138 mysql_close(connect_orca());

139

140 connect_Users();

141

142 return TRUE;

143 }

144 }

145

146 mysql_close(connect_orca());

147

148 connect_Users();

149

150 return FALSE;

151 }

152 ?>

153

154 <? /////////////////// ADD_USER_SERVICE /////////////////////////////////////

155 // Add the service to the user's list

156 // of services and update the total

157 // number of users using the service

158 function add_user_service($service_ID) {

159 //Insert the user_ID and service_ID into

160 // User_has_Services

161 $user_ID = $_SESSION['user_ID'];

162 $query = mysql_query(

163 "INSERT INTO User_has_Services (

164 User_user_ID,

165 Services_service_ID)

166 VALUES('$user_ID',

167 '$service_ID') ")

168 or die(mysql_error() . "\n Query9: " . $query);

169 }

170 ?>

171

172 <? //////////////// INCREMENT_SERVICE_TOTALS ////////////////////////////////

173 //Increment the service totals if the user downloads the service

174 function increment_service_totals($service_ID) {

175

176

177 if(!service_ID_exists($service_ID)) {

178 $query = mysql_query(

179 "INSERT INTO Services (service_ID)

180 VALUES('$service_ID') ")

181 or die(mysql_error() . "\n Query10: " . $query);

182 }

183 //find the current service total

184 $query=sprintf("SELECT service_ID,

185 totals

186 FROM Services

187 WHERE service_ID=$service_ID")//,

188 or die(mysql_error() . "\n Query11: " . $query);

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 170 ~

189

190 $result = mysql_query($query);

191 $i=0;

192 while($row = mysql_fetch_array($result)) {

193 $i = $row['totals'];

194 $i++;

195 $update = sprintf("UPDATE Services

196 SET totals=$i

197 WHERE service_ID=$service_ID")

198 or die(mysql_error() . "\n Query12: " . $update);

199

200 mysql_query($update);

201 }

202 }

203 ?>

204

205 <? //////////////// DECREMENT_SERVICE_TOTALS ////////////////////////////////

206 //Decrement the service totals if the user downloads the service

207 function decrement_service_totals($service_ID) {

208

209 //find the current service total

210 $query=sprintf("SELECT service_ID,

211 totals

212 FROM Services

213 WHERE service_ID=$service_ID")//,

214 or die(mysql_error() . "\n Query13: " . $query);

215

216 $result = mysql_query($query);

217

218 while($row = mysql_fetch_array($result)) {

219 //Delete the row if the last user deletes the service

220 if($row['totals'] == 1) {

221 $query = mysql_query(

222 "DELETE FROM Services

223 WHERE service_ID=$service_ID")

224 or die(mysql_error() . "\n Query14: " . $query);

225 }

226 else {

227 //decrement totals by 1

228 $i = $row['totals'];

229 $i--;

230 $update = sprintf("UPDATE Services

231 SET totals=$i

232 WHERE service_ID=$service_ID")

233 or die(mysql_error() . "\n Query15: " . $update);

234

235 mysql_query($update);

236 }

237 }

238 }

239 ?>

240

241 <? /////////////////// ACTOR_IP_EXISTS //

242 //Return TRUE for matching IP address, FALSE OTHERWISE

243 function actor_ip_exists($ip) {

244

245 //Remove the port from the ip

246 $ip_explode = explode(":", $ip);

247

248 //Check to see if the parent or child ip is in the Users.Actor database

249 $query = sprintf("SELECT ip

250 FROM Actor

251 WHERE ip='%s'",

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 171 ~

252 mysql_real_escape_string($ip_explode[0]))

253 or die(mysql_error() . "\n Query16: " . $query);

254

255 $result = mysql_query($query);

256 while($row = mysql_fetch_array($result)) {

257 if(isset($row['ip'])) return TRUE;

258 }

259 return FALSE;

260 }

261 ?>

262

263 <? /////////////////// SERVICE_ID_EXISTS //

264 //Return TRUE for matching service, FALSE OTHERWISE

265 function service_ID_exists($service_ID) {

266

267 //Check to see if the service is in the Users.Service database

268 $query = sprintf("SELECT service_ID

269 FROM Services

270 WHERE service_ID='%s'",

271 mysql_real_escape_string($service_ID))

272 or die(mysql_error() . "\n Query17: " . $query);

273

274 $result = mysql_query($query);

275 while($row = mysql_fetch_array($result)) {

276 if(isset($row['service_ID'])) return TRUE;

277 }

278 return FALSE;

279 }

280 ?>

281

282 <? /////////////////// GET_CLIENT_PORT //

283 //Return the port number for matching IP address, FALSE OTHERWISE

284 function get_client_port() {

285

286 foreach($_SESSION['actors'] as $value) {

287

288 //Get the client port from the Users.Actor database

289 $query = sprintf("SELECT port

290 FROM Actor

291 WHERE ip='%s'

292 AND guid='%s'",

293 mysql_real_escape_string($_SERVER['REMOTE_ADDR']),

294 mysql_real_escape_string($value))

295 or die(mysql_error() . "\n Query32: " . $query);

296

297 $result = mysql_query($query);

298 while($row = mysql_fetch_array($result)) {

299

300 if(isset($row['port'])) return $row['port'];

301 }

302 }

303 return FALSE;

304 }

305 ?>

306

307 <? /////////////////// GET_CLIENT_PRIVATE_KEY /////////////////////////////////

308 //Return the port number for matching IP address, FALSE OTHERWISE

309 function get_client_private_key() {

310

311 foreach($_SESSION['actors'] as $value) {

312

313 //Get the client private key from the Users.Actor database

314 $query = sprintf("SELECT private_key_loc

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 172 ~

315 FROM Actor

316 WHERE ip='%s'

317 AND guid='%s'",

318 mysql_real_escape_string($_SERVER['REMOTE_ADDR']),

319 mysql_real_escape_string($value))

320 or die(mysql_error() . "\n Query33: " . $query);

321

322 $result = mysql_query($query);

323 while($row = mysql_fetch_array($result)) {

324

325 if(isset($row['private_key_loc'])) return $row['private_key_loc'];

326 }

327 }

328 return FALSE;

329 }

330 ?>

331

332 <? /////////////////// GET_CLIENT_MSS_USER ////////////////////////////////////

333 //Get the mss_user for the matching IP address, FALSE OTHERWISE

334 function get_client_mss_user() {

335

336 foreach($_SESSION['actors'] as $value) {

337

338 //Get the client username from the Users.Actor database

339 $query = sprintf("SELECT mss_user

340 FROM Actor

341 WHERE ip='%s'

342 AND guid='%s'",

343 mysql_real_escape_string($_SERVER['REMOTE_ADDR']),

344 mysql_real_escape_string($value))

345 or die(mysql_error() . "\n Query19: " . $query);

346

347 $result = mysql_query($query);

348 while($row = mysql_fetch_array($result)) {

349

350 if(isset($row['mss_user'])) return $row['mss_user'];

351 }

352 }

353 return FALSE;

354 }

355 ?>

356

357 <? //////////////////// GET_USER_SERVICES ///////////////////////////////////

358 function get_user_services() {

359

360 unset_svc_vars();

361 if(!isset($_SESSION['svc'])) {

362

363 $_SESSION['svc'] = array();

364 }

365

366 //List the user's services as a array in SESSION

367 $query = sprintf("SELECT User_user_ID,

368 Services_service_ID

369 FROM User_has_Services

370 WHERE User_user_ID='%s'",

371 mysql_real_escape_string($_SESSION['user_ID']));

372 $result = mysql_query($query);

373

374 while($row=mysql_fetch_array($result)) {

375 array_push($_SESSION['svc'], $row['Services_service_ID']);

376 }

377 }

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 173 ~

378 ?>

379

380 <? //////////////////// GET_USER_SERVICES ///////////////////////////////////

381 function get_user_actors($user_ID) {

382

383 //List the user's services as a array in SESSION

384 $_SESSION['actors'] = array();

385

386 $query = sprintf("SELECT Actor_guid,

387 User_user_ID

388 FROM Actor_has_User

389 WHERE User_user_ID='%s'",

390 mysql_real_escape_string($user_ID));

391 $result = mysql_query($query);

392

393 while($row=mysql_fetch_array($result)) {

394 array_push($_SESSION['actors'], $row['Actor_guid']);

395 }

396 }

397 ?>

398

399 <? //////////////////// GET_USER_ASSIGNMENTS ///////////////////////////////////

400 function get_user_assignments($guid) {

401

402 //List all users under each actor

403 $query = sprintf("SELECT user_ID,

404 name,

405 administrator

406 FROM User");

407 $result = mysql_query($query);

408

409 while($row=mysql_fetch_array($result)) {

410

411 ?> <table border="0" cellspacing="10" cellpadding="1">

412 <tr>

413 <? //List the user names with a checkbox and whether

414 // he or she is an administrator

415 //Display the current assignments upon opening,

416 // Insert reassignments upon "Submit All". ?>

417 <td align="center" width="100">

418 <? echo '<input type="checkbox"

419 name="au_assign[]" '.

420 set_au_value($guid, $row['user_ID']).' '.

421 get_au_checked($guid, $row['user_ID']). '/>'; ?>

422 </td>

423

424 <td width="200">

425 <? echo $row['name']; ?>

426 </td>

427

428 <td style="font-family: monospace;">

429 <? if ($row['administrator'] == 0) echo '';

430 elseif ($row['administrator'] == 1) echo 'LOCAL Admin';

431 elseif ($row['administrator'] == 2) echo'Client Admin';

432 else echo 'User type unknown!

433 Contact your Local Administrator.'; ?>

434 </td>

435 </tr>

436 </table>

437 <? }

438 }

439 ?>

440

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 174 ~

441 <? //////////////////// SET_VALUE ///

442 //Returns a space separated string of Actor_guid, user_ID

443 function set_au_value($guid, $user_ID) {

444

445 return "value=\"".$guid." ".$user_ID."\"";

446 }

447 ?>

448

449 <? //////////////////// GET_CHECKED ///

450 function get_au_checked($guid, $user_ID) {

451

452 //Check the checkbox if the user currently can download from

453 // the actor

454 $query = sprintf("SELECT Actor_guid,

455 User_user_ID

456 FROM Actor_has_User

457 WHERE Actor_guid='%s'",

458 mysql_real_escape_string($guid));

459 $result = mysql_query($query);

460

461 while($row=mysql_fetch_array($result)) {

462 if($row['User_user_ID'] == $user_ID) {

463 return "checked=\"checked\"";

464 }

465 }

466 }

467 ?>

468

469 <? ////////////////////// NULL_NU_VARS //////////////////////////////////////

470 // Unset only the NEW USER variables

471 function null_nu_vars()

472 {

473 //Unset session variables

474 unset($_SESSION['nu_name']);

475 unset($_SESSION['nu_password1']);

476 unset($_SESSION['nu_password2']);

477 unset($_SESSION['nu_administrator']);

478 unset($_SESSION['nu_mysql_user']);

479 unset($_SESSION['nu_mysql_password1']);

480 unset($_SESSION['nu_mysql_password2']);

481 unset($_SESSION['nu_mysql_host']);

482 unset($_SESSION['nu_submit']);

483

484 //Unset page variables

485 unset($_POST['nu_name']);

486 unset($_POST['nu_password1']);

487 unset($_POST['nu_password2']);

488 unset($_POST['nu_administrator']);

489 unset($_POST['nu_mysql_user']);

490 unset($_POST['nu_mysql_password1']);

491 unset($_POST['nu_mysql_password2']);

492 unset($_POST['nu_mysql_host']);

493 unset($_POST['nu_submit']);

494 }

495 ?>

496

497 <? ////////////////////// UNSET_SVC_VARS //////////////////////////////////////

498 // Unset only the SVC variables

499 function unset_svc_vars()

500 {

501 //Unset session variables

502 unset($_SESSION['svc']);

503 unset($_SESSION['svc_download']);

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 175 ~

504 unset($_SESSION['svc_path']);

505 unset($_SESSION['svc_filename']);

506 unset($_SESSION['svc_shasum']);

507

508 //Unset page variables

509 unset($_POST['svc']);

510 unset($_POST['svc_download']);

511 unset($_POST['svc_path']);

512 unset($_POST['svc_filename']);

513 unset($_POST['svc_shasum']);

514 }

515 ?>

516

517 <? ////////////////////// UNSET_NA_VARS //////////////////////////////////////

518 // Unset only the NEW ACTOR variables

519 function unset_na_vars()

520 {

521 //Unset session variables

522 unset($_SESSION['na_guid']);

523 unset($_SESSION['na_name']);

524 unset($_SESSION['na_ip']);

525 unset($_SESSION['na_port']);

526 unset($_SESSION['na_private_key_loc']);

527 unset($_SESSION['na_mss_user']);

528 unset($_SESSION['na_sponsor']);

529 unset($_SESSION['na_submit']);

530

531

532 //Unset page variables

533 unset($_POST['na_guid']);

534 unset($_POST['na_name']);

535 unset($_POST['na_ip']);

536 unset($_POST['na_port']);

537 unset($_POST['na_private_key_loc']);

538 unset($_POST['na_mss_user']);

539 unset($_POST['na_sponsor']);

540 unset($_POST['na_submit']);

541 }

542 ?>

543

544 <? ////////////////////// UNSET_AU_VARS //////////////////////////////////////

545 // unset only the ASSIGN USER variables

546 function unset_au_vars()

547 {

548 //Unset session variables

549 unset($_SESSION['au_assign']);

550 unset($_SESSION['au_submit']);

551

552 //Unset page variables

553 unset($_POST['au_assign']);

554 unset($_POST['au_submit']);

555 }

556 ?>

557

558 <? ////////////////////// UNSET_DA_VARS //////////////////////////////////////

559 // unset only the DEL_ACTORS variables

560 function unset_da_vars()

561 {

562 //Unset session variables

563 unset($_SESSION['del_actor']);

564 unset($_SESSION['da_submit']);

565

566 //Unset page variables

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 176 ~

567 unset($_POST['del_actor']);

568 unset($_POST['da_submit']);

569 }

570 ?>

571

572 <? ////////////////////// UNSET_DU_VARS //////////////////////////////////////

573 // unset only the DEL_USERS variables

574 function unset_du_vars()

575 {

576 //Unset session variables

577 unset($_SESSION['del_user']);

578 unset($_SESSION['du_submit']);

579

580 //Unset page variables

581 unset($_POST['del_user']);

582 unset($_POST['du_submit']);

583 }

584 ?>

585

586 <? ////////////////////// UNSET_DS_VARS //////////////////////////////////////

587 // unset only the DEL_SERVICES variables

588 function unset_ds_vars()

589 {

590 //Unset session variables

591 unset($_SESSION['del_service']);

592 unset($_SESSION['del_all_service']);

593 unset($_SESSION['ds_submit']);

594

595 //Unset page variables

596 unset($_POST['del_service']);

597 unset($_POST['del_all_service']);

598 unset($_POST['ds_submit']);

599 }

600 ?>

601

602 <? ////////////////////// UNSET_CC_VARS //////////////////////////////////////

603 // unset only the CHOOSE_CATEGORY variables

604 function unset_cc_vars()

605 {

606 //Unset session variables

607 unset($_SESSION['cc_category']);

608 unset($_SESSION['cc_submit']);

609

610 //Unset page variables

611 unset($_POST['cc_category']);

612 unset($_POST['cc_submit']);

613 }

614 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 177 ~

header.php
 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 2 <html xmlns="http://www.w3.org/1999/xhtml">

 3

 4

 5 <head>

 6 <link href="style.css" rel="stylesheet" type="text/css"/>

 7 <title>GENI: Mutualistic Software Services</title>

 8 </head>

 9 <body>

10 <table cellspacing="20"><tr><td></td><td><h1>

11 Mutualistic Software Services (MSS)</h1></td></tr></table>

12 <p></p>

13 <?php include('cookie.php')?>

index.php
 1 <?php

 2

 3 //Purpose: Connect to Users with username and password.

 4 // Log out after 20 minutes of inactivity.

 5 //Author: John P. Quan

 6 //Version: 1.0

 7 //Date: 20120105

 8

 9 //Start a new Login SESSION

 10 ?>

 11 <? //STANDARD SESSION LIFE AND INACTIVITY CHECK

 12 session_cache_expire(20);

 13 session_start();

 14 $inactive = 1200;

 15 if(isset($_SESSION['start']))

 16 {

 17 $session_life = time() - $_SESSION['start'];

 18 if($session_life > $inactive)

 19 {

 20 header("Location: user_logout.php");

 21

 22 $_SESSION['valid_user'] = 'false';

 23 //CLOSE PREVIOUS SESSION*

 24 $_SESSION;

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 178 ~

 25 session_destroy();

 26 }

 27 }

 28

 29 $_SESSION['start'] = time();

 30 //BELOW IS UNNECESSARY FOR THE INDEX.PHP PAGE

 31 //if($_SESSION['valid_user'] == true

 32 // AND $_SESSION['authorized_user'] == true)

 33 //{

 34 ?>

 35

 36 <? //STANDARD AREA TO INCLUDE FILES AND INITIALIZE DATA

 37

 38 include '../scripts/header.php';

 39 include '../scripts/connect_Users.php';

 40 include 'functions_User.php';

 41

 42 connect_Users();

 43

 44 ////initialize user data

 45 $_SESSION['valid_user'] = "false";

 46 $_SESSION['username'] = "";

 47 $_SESSION['user_ID'] = 0;

 48 $_SESSION['password'] = "";

 49 $_SESSION['guid'] = "0";

 50 $_SESSION['administrator'] = "";

 51 //initialize the user's service list

 52

 53 echo "<h3><center>Welcome</center></h3>";

 54

 55 ?>

 56

 57 <?php //If there is no username/password, enter them

 58

 59 if ($_POST['username'] == "")

 60 {

 61 ?>

 62

 63 <div id="wrap">

 64

 65 <? echo "Provide your MSS Credentials:
" ?>

 66 <HR>

 67 <form method="post" action="index.php">

 68 <table style="margin-left:3px"

 69 border="0"

 70 cellspacing="10"

 71 cellpadding="1">

 72 <tr align="left">

 73

 74 <td width="10">

 75 <? //Placeholder ?>

 76 </td>

 77 <th>

 78 Username:

 79 </th>

 80 <td>

 81 <input type="text"

 82 name="username"

 83 size="20">

 84 </td>

 85 </tr>

 86 <tr>

 87 <td width="10">

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 179 ~

 88 <? //Placeholder ?>

 89 </td>

 90 <th>

 91 Password:

 92 </th>

 93 <td>

 94 <input type="password"

 95 name="password"

 96 size="20">

 97

 98 </td>

 99 <tr>

100 <td width="10">

101 <? //Placeholder ?>

102 </td>

103 <th>

104 <? //Placeholder ?>

105 </th>

106 <td>

107 <input type="Submit"

108 value="Submit">

109 </td>

110 </tr>

111 </table>

112 </form>

113

114 <?php

115 }

116 else

117 {

118 //grab the input

119 $username = $_POST['username'];

120 $password = $_POST['password'];

121

122 //compare the input to the users in the Users database

123 $query = sprintf("SELECT user_ID,

124 name,

125 password,

126 guid,

127 administrator

128 FROM User

129 WHERE name='%s'

130 AND password='%s'",

131 mysql_real_escape_string($username),

132 mysql_real_escape_string($password));

133

134 $result= mysql_query($query);

135

136 //Print on error...

137 if (!$result)

138 {

139 $message = 'Invalid query: ' . mysql_error() . "\n";

140 $message .= 'Whole query: ' . $query;

141 die($message);

142 // ...and make sure invalid users can't get in to other pages

143 $_SESSION['valid_user'] = "false";

144 session_unset();

145 ?>

146 Error in username or password.

147 Please log in again.

148 <?

149 }

150 else

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 180 ~

151 {

152 //Load the rest of the user's data into the session...

153 $row = mysql_fetch_array($result);

154 //...if they give the right credentials

155 if($row['name'] == $username AND $row['password'] == $password)

156 {

157 $_SESSION['user_ID'] = $row['user_ID'];

158 $_SESSION['username'] = $row['name'];

159 $_SESSION['password'] = $row['password'];

160 $_SESSION['guid'] = $row['guid'];

161 $_SESSION['administrator'] = $row['administrator'];

162 // allow a valid_user to view the website

163 $_SESSION['valid_user'] = "true";

164 $valid_user = "true";

165 }

166 else $_SESSION['valid_user'] = "false";

167 }

168 //Get the user's actors for which he or she is authorized to

169 // download services.

170 get_user_actors($_SESSION['user_ID']);

171 //Find out if the server address matches the list of sponsors the

172 // user is allowed to download from.

173 check_authorized_user();

174 $authorized_user = $_SESSION['authorized_user'];

175 //Show the available web pages if you are a valid, authorized user

176 if ($valid_user == "true" and $authorized_user == "true")

177 {

178 include 'menu.php';

179 //adjusts the header

180 echo "
"; ?>

181

182 <?

183 get_user_services();

184 $mss_locaton=MSS_SERVICES;

185 ?>

186

187 <div id="wrap">

188

189 <? // Give the instructions for each page

190 echo "Here are the directions for using MSS:
" ?>

191 <hr>

192 <table style="margin-left:3px"

193 border="0"

194 cellspacing="0"

195 cellpadding="4">

196

197 <tr>

198 <td valign="top" width="197">

199 <?

200 echo "Sponsor";

201 ?>

202 </td>

203 <td><div style="border: solid 0 #060;

204 border-color: rgb(248, 180, 66);

205 border-left-width:2px;

206 padding-left:0.5ex">

207 <? //

208 echo "This is the actor in your Global Environment for

209 Network Innovation (GENI) control framework.

210 Your sponsor must be actively donating to GENI in

211 order to download new services.";

212 ?>

213 </div>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 181 ~

214 </td>

215 </tr>

216

217 <tr>

218 <td valign="top" width="197">

219 <?

220 echo "Sponsored Services";

221 ?>

222 </td>

223 <td><div style="border: solid 0 #060;

224 border-color: rgb(248, 180, 66);

225 border-left-width:2px;

226 padding-left:0.5ex">

227 <? //

228 echo "The subset of GENI services your sponsor

229 provides.";

230 ?>

231 </div>

232 </td>

233 </tr>

234

235 <tr>

236 <td valign="top" width="197">

237 <?

238 echo "Choose Services";

239 ?>

240 </td>

241 <td><div style="border: solid 0 #060;

242 border-color: rgb(248, 180, 66);

243 border-left-width:2px;

244 padding-left:0.5ex">

245 <? //

246 echo "Use this page to download services to your

247 computer.";

248 ?>

249 </div>

250 </td>

251 </tr>

252

253 <? if($_SESSION['administrator'] == 1

254 OR $_SESSION['administrator'] == 2) {

255 if($_SESSION['authorized_sponsor'] == "true") { ?>

256

257 <tr>

258 <td valign="top" width="197">

259 <?

260 echo "Choose Categories";

261 ?>

262 </td>

263

264 <td><div style="border: solid 0 #060;

265 border-color: rgb(248, 180, 66);

266 border-left-width:2px;

267 padding-left:0.5ex">

268 <? //

269 echo "This option is only available to an authorized

270 sponsor, which is a server that hosts a subset

271 of its parent sponsor. The sponsor must be

272 identified as such by using the <i>Add

273 Sponsor</i> page. You must use the GUID of a

274 currently donating GENI control framework

275 actor in order to download new services from

276 your parent sponsor. For instance, Duke

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 182 ~

277 University might serve ORCA-related services

278 and have many child sponsors, which in turn

279 would be a parent sponsor of many child

280 sponsors, and so on. A high level view of

281 this arrangement might look like this:

282

283 <pre>

284

285

286 GENI MSS CENTER --> PlanetLab --> ..

287 --> ProtoGENI --> ..

288 --> ORCA --> physical client1

289 --> physical client2

290 --> physical client..N

291 --> virtual client1

292 --> virtual client2

293 --> virtual client..N

294 --> orca-uaf-2 --> physical client1

295 --> physical client2

296 --> physical client..N

297 --> virtual client1

298 --> virtual client2

299 --> virtual client..N

300 --> orca-barrow-0 --> physical client1

301 --> physical client2

302 --> physical client..N

303 --> virtual client1

304 --> virtual client2

305 --> virtual client..N

306 </pre>";

307 ?>

308 </div>

309 </td>

310 </tr>

311 <? }

312 }?>

313

314 <? if($_SESSION['administrator'] == 1) { ?>

315 <tr>

316 <td valign="top" width="197">

317 <?

318 echo "List Users";

319 ?>

320 </td>

321

322 <td><div style="border: solid 0 #060;

323 border-color: rgb(248, 180, 66);

324 border-left-width:2px;

325 padding-left:0.5ex">

326 <? //

327 echo "List all of the users authorized to log on to

328 this sponsor";

329 ?>

330 </div>

331 </td>

332 </tr>

333

334 <tr>

335 <td valign="top" width="197">

336 <?

337 echo "List Actors";

338 ?>

339 </td>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 183 ~

340

341 <td><div style="border: solid 0 #060;

342 border-color: rgb(248, 180, 66);

343 border-left-width:2px;

344 padding-left:0.5ex">

345 <? //

346 echo "List all of the computers authorized to

347 connect to this sponsor. You must also load

348 your sponsor into this list by using <i>Add

349 Sponsor</i>. You will find your sponsor's

350 Globally Unique Identifier (GUID) on the

351 <i>Sponsor</i> page.";

352 ?>

353 </div>

354 </td>

355 </tr>

356

357 <tr>

358 <td valign="top" width="197">

359 <?

360 echo "Add User";

361 ?>

362 </td>

363

364 <td><div style="border: solid 0 #060;

365 border-color: rgb(248, 180, 66);

366 border-left-width:2px;

367 padding-left:0.5ex">

368 <? //

369 echo "List all of the users authorized on this sponsor";

370 ?>

371 </div>

372 </td>

373 </tr>

374

375 <tr>

376 <td valign="top" width="197">

377 <?

378 echo "Add Client";

379 ?>

380 </td>

381

382 <td><div style="border: solid 0 #060;

383 border-color: rgb(248, 180, 66);

384 border-left-width:2px;

385 padding-left:0.5ex">

386 <? //

387 echo "Follow these steps to authorize a client to

388 download services:

389 (1) Add the client's unique Name.

390 For instance, the name could be \"John Laptop\"

391 or a combination of its IP and port, such as

392 \"1.2.3.4-6001\".

393 (2) Add the client's IP address.

394 (3) Add the client's Port. The default

395 port is 22, but virtual machine (VM) hosts often

396 forward a port to the VM's port 22, such as port

397 6001.

398 (4) Add the sponsor's Private Key Location

399 for this actor. VMs often have a specific private

400 key to use that is different than the sponsor's

401 private key.

402 (5) Add the MSS User Name, which is the

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 184 ~

403 name one would use to remotely connect to the

404 computer. For instance, one must often log in

405 to VMs as user \"root\" or \"ubuntu\".

406 (6) In addition:

407 <pre>

408 MSS DELIVERS SERVICES USING SECURE SHELL (SSH) AND

409 SECURE COPY (SCP) AS THE APACHE USER 'www-data', SO

410 ASSUMING YOUR MSS USER IS NAMED 'workers'

411 <u>ON THE SPONSOR</u>:

412 -change www-data's default shell to bash

413 in /etc/passwd

414 -add these groups:

415 usermod -a -G workers www-data

416 (allows www-data to run the shell scripts)

417 usermod -a -G mss www-data

418 (all MSS users belong to group mss)

419 -set the UID/GID on /home/work/MSS directory to:

420 chmod ug+s /home/work/MSS

421 chmod 0770 /home/work/MSS

422 -set the ssh key directory so www-data can access:

423 chmod 0750 /home/work/.ssh

424 <u>ON A CLIENT EUCALYPTUS INSTANCE</u> (such as Ubuntu 11.04):

425 -as root...

426 -add group mss

427 addgroup mss

428 usermod -a -G mss ubuntu

429 -add directory \"".$mss_locaton."/MSS\"

430 mkdir \"".$mss_locaton."/MSS\"

431 chown ubuntu:mss \"".$mss_locaton."/MSS\"

432 <u>ON A PHYSICAL CLIENT</u>:

433 -add group mss

434 addgroup mss

435 -add user workers if the user does not exist

436 adduser workers

437 usermod -a -G mss workers

438 -add directory \"".$mss_locaton."/MSS\"

439 mkdir /usr/share/MSS

440 chown workers:mss /usr/share/MSS

441 <u>ON THE SPONSOR</u>:

442 su workers

443 -use passwordless ssh by placing the public key in the

444 authorized_users file. For instance:

445 ssh-keygen

446 ssh-copy-id ‘-p XXXX -i ~/.ssh/id_dsa.pub workers@client.ip.’

447 (the public key must be in /home/workers/.ssh/authorized_keys)

448 </pre>";

449 ?>

450 </div>

451 </td>

452 </tr>

453

454 <tr>

455 <td valign="top" width="197">

456 <?

457 echo "Add Sponsor";

458 ?>

459 </td>

460

461 <td><div style="border: solid 0 #060;

462 border-color: rgb(248, 180, 66);

463 border-left-width:2px;

464 padding-left:0.5ex">

465 <? //

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 185 ~

466 echo "Follow these steps to establish a sponsor, from

467 which clients will download services:

468 (1) Add the sponsor's GUID, which one can

469 find on the <i>Sponsor</i> page.

470 (2) Add the sponsors's unique Name.

471 For instance, the name could be its hostname, such

472 as \"orca-barrow-0\" or its IP

473 address, such as \"1.2.3.4\".

474 (3) Add the sponsors's IP address.

475 (4) Add the sponsor's Port. The default

476 port is 22, but virtual machine (VM) hosts often

477 forward a port to the VM's port 22, such as port

478 6001.

479 (5) Add the sponsor's Private Key Location

480 for this actor. VMs often have a specific private

481 key to use that is different than the sponsor's

482 private key.

483 (6) Add the MSS User Name, which is the

484 name one would use to remotely connect to the

485 computer. For instance, one must often log in

486 to VMs as user \"root\" or \"ubuntu\".

487 (7) In addition:
<pre>

488 MSS SPONSOR IS A TYPICAL LINUX APACHE MYSQL & PHP (LAMP) SERVER

489 PLEASE REFER TO THE DOCUMENTATION ON THE SPONSOR SETUP</pre>";

490 ?>

491 </div>

492 </td>

493 </tr>

494

495 <tr>

496 <td valign="top" width="197">

497 <?

498 echo "Assign Users";

499 ?>

500 </td>

501

502 <td><div style="border: solid 0 #060;

503 border-color: rgb(248, 180, 66);

504 border-left-width:2px;

505 padding-left:0.5ex">

506 <? //

507 echo "Assign a specific user or users to a client or

508 clients. Assign the user to the sponsor

509 from which he or she is authorized to download

510 services.";

511 ?>

512 </div>

513 </td>

514 </tr>

515

516 <tr>

517 <td valign="top" width="197">

518 <?

519 echo "Delete Actors";

520 ?>

521 </td>

522

523 <td><div style="border: solid 0 #060;

524 border-color: rgb(248, 180, 66);

525 border-left-width:2px;

526 padding-left:0.5ex">

527 <? //

528 echo "Choose the actor or actors to delete from this

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 186 ~

529 sponsor.";

530 ?>

531 </div>

532 </td>

533 </tr>

534

535 <tr>

536 <td valign="top" width="197">

537 <?

538 echo "Delete Users";

539 ?>

540 </td>

541

542 <td><div style="border: solid 0 #060;

543 border-color: rgb(248, 180, 66);

544 border-left-width:2px;

545 padding-left:0.5ex">

546 <? //

547 echo "Choose the user or users to delete from this

548 sponsor.";

549 ?>

550 </div>

551 </td>

552 </tr>

553

554 <? }?>

555

556 <tr>

557 <td valign="top" width="197">

558 <?

559 echo "Delete Services";

560 ?>

561 </td>

562

563 <td><div style="border: solid 0 #060;

564 border-color: rgb(248, 180, 66);

565 border-left-width:2px;

566 padding-left:0.5ex">

567 <? //

568 echo "Choose the service or services to delete from your

569 computer. MSS will only completely remove the

570 service if all users on this computer choose to

571 delete the service. This helps to ensure that

572 several users do not overwrite the same service by

573 choosing to download it at different times, and

574 thus saves bandwidth.

575 In addition, administrators have the

576 option to delete the service immediately.";

577

578 ?>

579 </div>

580 </td>

581 </tr>

582

583 <tr>

584 <td valign="top" width="197">

585 <?

586 echo "Log Off";

587 ?>

588 </td>

589

590 <td><div style="border: solid 0 #060;

591 border-color: rgb(248, 180, 66);

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 187 ~

592 border-left-width:2px;

593 padding-left:0.5ex">

594 <? //

595 echo "Closes the current session and allows one

596 to log in again or as a different user.";

597

598 ?>

599 </div>

600 </td>

601 </tr>

602

603 <div id="foot">

604

605 <? }

606 if ($_SESSION['authorized_user'] == "false") {

607 ?>

608 You are not authorized to download from this Actor.

609 Please contact your administrator.

610 You may also log out

611 and try to log in again.

612 <? break;

613 }

614 if ($_SESSION['valid_user'] == "false")

615 {

616 //You must not be a registered user!

617 session_unset();

618 ?>

619 Error in username or password.

620 Please log in again.

621 <?php

622 }

623 //refresh the page to load user services into the svc array

624 if(!isset($_SESSION['svc']))

625 {

626 //Create an array to hold the user's services in SESSION

627 $_SESSION['svc'] = array();

628 //Get the user's services

629 get_user_services();

630 }

631 } ?>

632

633 <?

634 echo "</table>";

635 echo "</div>";

636

637 include('../scripts/footer.php');

638 echo "</div>";

639 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 188 ~

list_actors.php
 1 <?php

 2 //Purpose: Connect to the Services database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6 ?>

 7

 8 <?

 9 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 10 session_cache_expire(20);

 11 session_start();

 12

 13 $inactive = 1200;

 14 if (isset($_SESSION['start']))

 15 {

 16 $session_life = time() - $_SESSION['start'];

 17 if ($session_life > $inactive)

 18 {

 19 header("Location: user_logout.php");

 20

 21 $_SESSION['valid_user'] = 'false';

 22 //CLOSE PREVIOUS SESSION*

 23 $_SESSION;

 24 session_destroy();

 25 }

 26 }

 27 //Set the session start time

 28 $_SESSION['start'] = time();

 29

 30 ///////// START OF PAGE /////////////////

 31

 32 if ($_SESSION['valid_user'] == true

 33 AND $_SESSION['authorized_user'] == true)

 34 {

 35 ?>

 36

 37 <?

 38 include '../scripts/connect_Users.php';

 39 include '../scripts/header.php';

 40

 41 connect_Users();

 42

 43 // Retrieve the Actor List

 44 $query = "SELECT * FROM Actor";

 45 $result = mysql_query($query);

 46

 47 echo "<h3><center>Current Actors</center></h3>";

 48 //Display the menu ribbon

 49 include 'menu.php';

 50 //adjusts the header

 51 echo "
";

 52 ?>

 53

 54 <div id="wrap">

 55

 56 <? echo "List of actors that are authorized to download

 57 from the sponsor:
" ?>

 58 <HR>

 59 <!--Create a table of current Services-->

 60 <table style="margin-left:25px; table-layout: auto;"

 61 border="0"

 62 cellspacing="10"

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 189 ~

 63 cellpadding="1" >

 64

 65 <h2>

 66 <tr>

 67 <th align="left">Actor</th>

 68 <th>Actor GUID</th>

 69 <th>IP Address</th>

 70 <th align="left">Port</th>

 71 <th align="left">Private Key Location</th>

 72 <th align="left">MSS User Name</th>

 73 <th align="left">Sponsor</th>

 74 </tr>

 75 <?

 76 while ($row= mysql_fetch_array($result))

 77 {

 78 ?>

 79 <tr>

 80 <td><? echo $row['name']; ?></td>

 81 <td><? echo $row['guid']; ?></td>

 82 <td align="right"><? echo $row['ip']; ?></td>

 83 <td align="right"><? echo $row['port']; ?></td>

 84 <td><? echo $row['private_key_loc']; ?></td>

 85 <td><? echo $row['mss_user']; ?></td>

 86 <td align ="center">

 87 <? $ip_explode = explode(":", $_SERVER['HTTP_HOST']);

 88 if($row['sponsor'] == 1 and

 89 ($ip_explode[0] == $row['ip']))

 90 echo "LOCAL";

 91 elseif ($row['sponsor'] == 1)

 92 echo "Client";

 93 else echo "No"; ?></td>

 94 </tr>

 95 </h2>

 96 <div id="foot">

 97

 98 <?

 99 }

100 echo "</table>";

101 echo "</div>";

102

103

104 mysql_close(connect_Users());

105

106 include('../scripts/footer.php');

107 echo "</div>";

108 ?>

109

110 <?php

111 ///////// END OF PAGE /////////////////

112 }

113 else

114 {

115

116 include ('../scripts/header.php');

117 ?>

118 <!--Print error message and offer to log in again-->

119 Either you are not allowed to access this page, or your session has expired.

120 Please log in again.

121

122 <?php

123 } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 190 ~

list_services.php
 1 <?php

 2 //Purpose: Connect to the Services database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6 ?>

 7

 8 <?

 9 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 10 session_cache_expire(20);

 11 session_start();

 12

 13 $inactive = 1200;

 14 if (isset($_SESSION['start'])) {

 15 $session_life = time() - $_SESSION['start'];

 16 if ($session_life > $inactive) {

 17 header("Location: user_logout.php");

 18

 19 $_SESSION['valid_user'] = 'false';

 20 //CLOSE PREVIOUS SESSION*

 21 $_SESSION;

 22 session_destroy();

 23 }

 24 }

 25 //Set the session start time

 26 $_SESSION['start'] = time();

 27

 28 ///////// START OF PAGE /////////////////

 29

 30 if ($_SESSION['valid_user'] == true

 31 AND $_SESSION['authorized_user'] == true)

 32 {

 33 ?>

 34

 35 <?

 36 include '../scripts/connect_Services.php';

 37 include '../scripts/header.php';

 38

 39 connect_Services();

 40

 41 // Retrieve the Services List

 42 $query = "SELECT * FROM Services";

 43 $result = mysql_query($query);

 44

 45 $num = mysql_numrows($result);

 46

 47 echo "<h3><center>Current Services</center></h3>";

 48 //Display the menu ribbon

 49 include 'menu.php';

 50 //adjusts the header

 51 echo "
";

 52 ?>

 53

 54 <div id="wrap">

 55

 56 <? echo "List of services on the sponsor:
" ?>

 57 <HR>

 58 <table style="margin-left:25px; table-layout: auto;"

 59 border="0"

 60 cellspacing="10"

 61 cellpadding="1"

 62 width="97%">

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 191 ~

 63 <h2>

 64 <tr>

 65 <th>Service ID</th>

 66 <th align="left">Service</th>

 67 <th align="left">File Name</th>

 68 <th>Description</th>

 69 <th>SHA Sum</th>

 70 <th align="left">Developer</th>

 71 <th align="left">Publisher</th>

 72 </tr>

 73 <?

 74 $i = 0;

 75 while ($i < $num) {

 76

 77 $service_ID = mysql_result($result, $i, "service_ID");

 78 $name = mysql_result($result, $i, "name");

 79 $filename = mysql_result($result, $i, "filename");

 80 $description = mysql_result($result, $i, "description");

 81 $shasum = mysql_result($result, $i, "shasum");

 82 $developer = mysql_result($result, $i, "developer");

 83 $publisher = mysql_result($result, $i, "publisher");

 84 ?>

 85 <tr>

 86 <td valign="top"

 87 align="center"

 88 width="90">

 89 <? echo $service_ID; ?></td>

 90 <td valign="top">

 91 <? echo $name; ?></td>

 92 <td valign="top">

 93 <? echo $filename; ?></td>

 94 <td valign="top">

 95 <? echo $description; ?></td>

 96 <td valign="top">

 97 <? echo $shasum; ?></td>

 98 <td valign="top">

 99 <? echo $developer; ?></td>

100 <td valign="top">

101 <? echo $publisher; ?></td>

102 </tr>

103 </h2>

104 <div id="foot">

105

106 <?

107 $i++;

108 }

109 echo "</table>";

110 echo "</div>";

111

112

113 mysql_close(connect_Services());

114

115 include('../scripts/footer.php');

116 echo "</div>"

117 ?>

118

119 <?php

120 ///////// END OF PAGE /////////////////

121 }

122 else

123 {

124

125 include ('../scripts/header.php');

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 192 ~

126 ?>

127 <!--Print error message and offer to log in again-->

128 Either you are not allowed to access this page, or your session has expired.

129 Please log in again.

130

131 <?php

132 } ?>

list_sponsor
 1 <?php

 2 //Purpose: Connect to the GENI database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6 ?>

 7

 8 <?

 9 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 10 session_cache_expire(20);

 11 session_start();

 12

 13 $inactive = 1200;

 14 if (isset($_SESSION['start']))

 15 {

 16 $session_life = time() - $_SESSION['start'];

 17 if ($session_life > $inactive)

 18 {

 19 header("Location: user_logout.php");

 20

 21 $_SESSION['valid_user'] = 'false';

 22 //CLOSE PREVIOUS SESSION*

 23 $_SESSION;

 24 session_destroy();

 25 }

 26 }

 27 //Set the session start time

 28 $_SESSION['start'] = time();

 29

 30 ///////// START OF PAGE /////////////////

 31

 32 if ($_SESSION['valid_user'] == true

 33 AND $_SESSION['authorized_user'] == true)

 34 {

 35 ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 193 ~

 36

 37 <?

 38 include '../scripts/connect_orca.php';

 39 include '../scripts/header.php';

 40

 41 connect_orca();

 42

 43 // Retrieve the ORCA Sponsor

 44 $query = "SELECT act_id,

 45 act_name,

 46 act_guid

 47 FROM Actors";

 48 $result = mysql_query($query);

 49

 50 echo "<h3><center>Sponsor</center></h3>";

 51 //Display the menu ribbon

 52 include 'menu.php';

 53 //adjusts the header

 54 echo "
";

 55 ?>

 56

 57 <div id="wrap">

 58

 59 <? echo "List of sponsors through which local users can download

 60 new services:
" ?>

 61 <HR>

 62 <!--Create a table of current Services-->

 63 <table style="margin-left:25px; table-layout: auto;"

 64 border="0"

 65 cellspacing="10"

 66 cellpadding="1" >

 67

 68 <h2>

 69 <tr>

 70 <th>Actor ID</th>

 71 <th align="left">Sponsor</th>

 72 <th>GUID</th>

 73 </tr>

 74 <?

 75 while ($row= mysql_fetch_array($result))

 76 {

 77 ?>

 78 <tr>

 79 <td><center><? echo $row['act_id']; ?></center></td>

 80 <td><? echo $row['act_name']; ?></td>

 81 <td><center><? echo $row['act_guid']; ?></center></td>

 82 </tr>

 83 </h2>

 84 <div id="foot">

 85

 86 <?

 87 }

 88 echo "</table>";

 89 echo "</div>";

 90

 91

 92 mysql_close(connect_orca());

 93

 94 include('../scripts/footer.php');

 95 echo "</div>";

 96 ?>

 97

 98 <?php

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 194 ~

 99 ///////// END OF PAGE /////////////////

100 }

101 else

102 {

103

104 include ('../scripts/header.php');

105 ?>

106 <!--Print error message and offer to log in again-->

107 Either you are not allowed to access this page, or your session has expired.

108 Please log in again.

109

110 <?php

111 } ?>

list_users.php
 1 <?php

 2 //Purpose: Connect to the Users database as user "workers"

 3 //Author: John P. Quan

 4 //Version: 1.0

 5 //Date: 20120105

 6 ?>

 7

 8 <?

 9 //STANDARD SESSION LIFE AND INACTIVITY CHECK

 10 session_cache_expire(20);

 11 session_start();

 12

 13 $inactive = 1200;

 14 if (isset($_SESSION['start'])) {

 15 $session_life = time() - $_SESSION['start'];

 16 if ($session_life > $inactive) {

 17 header("Location: user_logout.php");

 18

 19 $_SESSION['valid_user'] = 'false';

 20 //CLOSE PREVIOUS SESSION*

 21 $_SESSION;

 22 session_destroy();

 23 }

 24 }

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 195 ~

 25 //Set the session start time

 26 $_SESSION['start'] = time();

 27

 28 ///////// START OF PAGE /////////////////

 29

 30 if ($_SESSION['valid_user'] == true

 31 AND $_SESSION['administrator'] == 1)

 32 {

 33

 34 ?>

 35 <?

 36 include '../scripts/connect_Users.php';

 37 include '../scripts/header.php';

 38

 39 connect_Users();

 40

 41 // Retrieve the Services List

 42 $query = "SELECT * FROM User";

 43 $result = mysql_query($query);

 44

 45 $num = mysql_num_rows($result);

 46

 47 echo "<h3><center>Current Users</center></h3>";

 48 //Display the menu ribbon

 49 include 'menu.php';

 50 //adjusts the header

 51 echo "
";

 52 ?>

 53

 54 <div id="wrap">

 55

 56 <? echo "List of users who are authorized to download

 57 from the sponsor:
" ?>

 58 <HR>

 59 <table style="margin-left:25px; table-layout: auto;"

 60 border="0"

 61 cellspacing="10"

 62 cellpadding="1" >

 63 <h2>

 64 <tr>

 65 <th align="left">User ID</th>

 66 <th align="left">Name</th>

 67 <th>GUID</th>

 68 <th align="left">Administrator</th>

 69 </tr>

 70 <?

 71 $i = 0;

 72 while ($i < $num) {

 73

 74 $user_ID = mysql_result($result, $i, "user_ID");

 75 $name = mysql_result($result, $i, "name");

 76 $guid = mysql_result($result, $i, "guid");

 77 $administrator = mysql_result($result, $i, "administrator");

 78 if ($administrator == 0) $administrator = 'No';

 79 elseif ($administrator == 1) $administrator='LOCAL';

 80 elseif ($administrator == 2) $administrator='Client';

 81 else $administrator='User type unknown!

 82 Contact your Local Administrator.';

 83 ?>

 84 <tr>

 85 <td align="center">

 86 <? echo $user_ID; ?></td>

 87 <td><? echo $name; ?></td>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 196 ~

 88 <td><? echo $guid; ?></td>

 89 <td align="center">

 90 <? echo $administrator; ?></td>

 91 </tr>

 92 </h2>

 93

 94 <div id="foot">

 95

 96 <?

 97 $i++;

 98 }

 99 echo "</table>";

100 echo "</div>";

101

102

103 mysql_close(connect_Users());

104

105 include('../scripts/footer.php');

106 echo "</div>"

107 ?>

108

109 <?php

110 ///////// END OF PAGE /////////////////

111 }

112 else

113 {

114

115 include ('../scripts/header.php');

116 ?>

117 <!--Print error message and offer to log in again-->

118 Either you are not allowed to access this page, or your session has expired.

119 Please log in again.

120

121 <?php } ?>

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 197 ~

menu.php
1 <?php

 2

 3 //Purpose: Acts as a menu bar for Available pages

 4 //Author: John P. Quan

 5 //Version: 1.0

 6 //Date: 20120105

 7

 8 ?>

 9

10 <?

11 //STANDARD SESSION LIFE AND INACTIVITY CHECK

12 session_cache_expire(20);

13 session_start();

14

15 $inactive = 1200;

16 if (isset($_SESSION['start'])) {

17 $session_life = time() - $_SESSION['start'];

18 if ($session_life > $inactive) {

19 header("Location: user_logout.php");

20

21 $_SESSION['valid_user'] = 'false';

22 //CLOSE PREVIOUS SESSION*

23 $_SESSION;

24 session_destroy();

25 }

26 }

27 //Set the session start time

28 $_SESSION['start'] = time();

29

30 include_once 'functions_php.php';

31

32 ///////// START OF PAGE /////////////////

33

34 if ($_SESSION['valid_user'] == true

35 AND $_SESSION['authorized_user'] == true)

36 {

37 ?>

38

39 <? //everyone sees these pages

40 echo " ";?>

41 Instructions -

42 Sponsor -

43 Sponsored Services -

44 Choose Services -

45 <? //only show the administrators these pages

46 if($_SESSION['administrator'] > 0)

47 {

48 ?>

49 <? //Only show choose_category for authorized_sponsors

50 if($_SESSION['authorized_sponsor'] == "true") { ?>

51 Choose Categories -

52 <? }

53 }

54 //Only the local administrators see these pages

55 if ($_SESSION['administrator'] == 1) { ?>

56 <!-- phpinfo-FOR TESTING ONLY! - -->

57 List Users -

58 List Actors -

59 Add User -

60 Add Client -

61 Add Sponsor -

62 <? //Do not show assign_users.php for the text-based browser W3M

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 198 ~

63 // because it does not interpret the page

64 // correctly. Administrators can log in from his or her computer

65 // with a full-featured browser to change these relationships.

66 if(key_array_search("w3m", $_SERVER) == FALSE) { ?>

67 Assign Users -

68 <? } ?>

69 Delete Actors -

70 Delete Users -

71 <? }

72 //Show the Logoff and Delete Services links last

73 ?>

74 Delete Services -

75 Log Off

76

77

78 <?php

79 ///////// END OF PAGE /////////////////

80 }

81 else

82 {

83

84 include ('../scripts/header.php');

85 ?>

86 <!--Print error message and offer to log in again-->

87 Either you are not allowed to access this page, or your session has expired.

88 Please log in again.

89

90 <?php

91 } ?>

style.css
 1 /*

 2 Document : style.css

 3 Created on : Jan 8, 2012, 7:17:41 PM

 4 Author : johnpquan

 5 Description: Provides a style for web pages.

 6 */

 7

 8 * {

 9 margin:0;

10 padding:0;

11 }

12 html, body {

13 height:100%;

14 background:rgb(128, 187, 213);

15 }

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 199 ~

16 h1 {

17 color:rgb(248, 180, 66);

18 font-size:40px;

19 }

20 h2 {

21 text-align:center;

22 color:rgb(248, 180, 66);

23 font-size:40px;

24 padding:-5px 0 0px; /* padding-bottom equals height of #foot */

25 }

26 h3 {

27 color:rgb(248, 180, 66);

28 font-size:40px;

29 }

30 p1 {

31 color:#000000;

32 margin-left:20px;

33 font-family:"Monospace";

34 font-size:20px;

35 }

36 #wrap {

37 min-height:100%;

38 width:100%;

39 margin-top:0 auto;

40 margin-bottom: 0 auto;

41 background:#ddd;

42 border:solid;

43 border-width: 0 0px;

44 }

45 #wrap:before { /* Opera and IE8 "redraw" bug fix */

46 content:"";

47 float:left;

48 height:100%;

49 margin-top:-999em;

50 }

51 * html #wrap { /* IE6 workaround */

52 height:10px;

53 }

54 #foot {

55 text-align:right;

56 font-family:"Times New Roman";

57 font-size:10px;

58 height:15px;

59 width:1000px;

60 margin:-15px auto 0; /* negative margin-top equals height of #foot */

61 }

62

63 root {

64 display: block;

65 }

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 200 ~

user_logout.php
 1 <?php

 2

 3 //Purpose: Show the user as logged out of the session

 4 //Author: John P. Quan

 5 //Version: 1.0

 6 //Date: 20120105

 7 //SESSION has ended

 8

 9

10 include '../scripts/header.php';

11

12 echo "User logged out of session.";

13

14 session_start();

15 session_unset();

16 session_destroy();

17 session_write_close();

18 setcookie(session_name(),'',0,'/');

19 session_regenerate_id(true);

20

21 ?>

22 Please log in again.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 201 ~

BASH Scripts

sh_check_heartbeats
 1 #! /bin/bash

 2

 3 #Download the ORCA Actors Registry

 4 # amdiff is greater than 0 if the actor is NOT donating,

 5 # or if the actor does not exist.

 6

 7 rm actors.jsp

 8

 9 ACTORS=`wget --no-check-certificate $1; egrep '(url\:|amdiff\:)' $2 | cut -d\' -f2;

chown workers:workers $2`

10

11 echo $ACTORS

sh_rsync_command
 1 #! /bin/bash

 2 #Use SSH to send rsync commands, such as downloading the service,

 3 # because this is often the only port open for Eucalyptus

 4 # instances (VMs).

 5

 6 OPTS="-q -o PreferredAuthentications=publickey -o HostbasedAuthentication=no -o

PasswordAuthentication=no -o StrictHostKeyChecking=no"

 7 USER=$1

 8 IP=$2

 9 PORT=$3

10 KEY=$4

11 FILE=$5

12 LOC=$6

13

14 RETURN=`rsync --delete --log-file=../scripts/logs/rsync/$(date

+%Y%m%d)_mss_rsync.log -e "ssh ${OPTS} -i ${KEY} -p ${PORT} -l ${USER}" -avzp ${FILE}

${IP}:${LOC}`

15

16 echo $RETURN

sh_ssh_command
 1 #! /bin/bash

 2 #Use SSH to send commands, such as downloading the service,

 3 # because this is often the only port open for Eucalyptus

 4 # instances (VMs).

 5

 6 OPTS="-q -o PreferredAuthentications=publickey -o HostbasedAuthentication=no -o

PasswordAuthentication=no -o StrictHostKeyChecking=no"

 7 USER=$1

 8 IP=$2

 9 PORT=$3

10 KEY=$4

11 COMMAND=$5

12

13 RETURN=`ssh ${OPTS} -i ${KEY} -p ${PORT} ${USER}\@${IP} ${COMMAND}`

14

15 echo $RETURN

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 202 ~

Appendix C

Hypervisor
The following sections provide the files from UAF’s remote server, orca-barrow-0, with only the

uncommented lines displayed because the commented lines have no affect on the system’s

configuration. In addition, any passwords, encryption keys, or other security information is masked or

changed. orca-barrow-0 is a single server with the Linux distribution Debian 6 and paravirtualized

Xen installed, and that resides in a server room in Barrow, AK. The files consider its public IP address to

be “public.IP.address,” and it is private, internal IP address ranges as displayed in Figure 2. ORCA

Remote Server.

Networking

/etc/network/interfaces

auto lo

iface lo inet loopback

allow-hotplug eth0

iface eth0 inet static

 address 192.168.1.100

 netmask 255.255.255.0

 gateway 192.168.1.1

 network 192.168.1.0

 broadcast 192.168.1.255

allow-hotplug eth1

iface eth1 inet static

 address 192.168.1.10

 netmask 255.255.255.0

 broadcast 192.168.1.255

auto dummy0

iface dummy0 inet manual

 pre-up ifconfig $IFACE up

 post-down ifconfig $IFACE down

auto xenbrdummy0

iface xenbrdummy0 inet static

 address 10.10.10.1

 network 10.10.10.0

 netmask 255.255.255.0

 broadcast 10.10.10.255

 bridge_ports dummy0

 bridge_stp off

 bridge_fd 0

 bridge_maxwait 0

Xen

/etc/xen-tools/xen-tools.conf
lvm = orca-barrow-0

install-method = debootstrap

size = 3Gb # Disk image size.

memory = 512Mb # Memory size

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 203 ~

swap = 1Gb # Swap size

fs = ext3 # use the EXT3 filesystem for the disk image.

dist = `xt-guess-suite-and-mirror --suite` # Default distribution to install.

image = sparse # Specify sparse vs. full disk images.

 gateway = public.IP.address

 netmask = 255.255.255.0

 broadcast = public.IP.broadcast.address

 passwd = 1

kernel = /boot/vmlinuz-`uname -r`

initrd = /boot/initrd.img-`uname -r`

 arch =amd64

mirror = `xt-guess-suite-and-mirror --mirror`

ext3_options = noatime,nodiratime,errors=remount-ro

ext2_options = noatime,nodiratime,errors=remount-ro

xfs_options = defaults

reiserfs_options = defaults

btrfs_options = defaults

/etc/xen/xend-config.sxp
(xend-http-server yes)

(xend-unix-server yes)

(xend-unix-path /var/lib/xend/xend-socket)

(xend-address localhost)

(network-script network-ORCA)

(vif-script vif-ORCA)

(dom0-min-mem 196)

(enable-dom0-ballooning yes)

(total_available_memory 0)

(dom0-cpus 0)

(vncpasswd '')

/etc/xen/orca-barrow-0.cfg
kernel = '/boot/vmlinuz-2.6.32-5-xen-amd64'

ramdisk = '/boot/initrd.img-2.6.32-5-xen-amd64'

vcpus = '1'

memory = '512'

root = '/dev/xvda2 ro'

disk = [

 'phy:/dev/orca-barrow-0/dnat-server-disk,xvda2,w',

 'phy:/dev/orca-barrow-0/dnat-server-swap,xvda1,w',

]

name = 'orca-barrow-0'

vif = ['ip=192.168.1.1, mac=00:16:3E:7B:6E:12, bridge=eth0' ,

'ip=public.IP.address, mac=00:16:3E:7B:6E:11, bridge=eth1']

on_poweroff = 'destroy'

on_reboot = 'restart'

on_crash = 'restart'

on_xend_start = 'start'

on_xend_stop = 'shutdown'

/etc/xen/scripts/vif-ORCA
#! /bin/sh

dir=$(dirname "$0")

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 204 ~

IFNUM=$(echo ${vif} | awk -F. '{ print $2 }')

if [["$IFNUM" == "0"]] ; then

 "$dir/vif-route" "$@"

else

 "$dir/vif-bridge" "$@"

fi

/etc/xen/scripts/network-ORCA
#!/bin/sh

/etc/xen/scripts/network-bridge "$@" vifnum=0 netdev=eth0

/etc/xen/scripts/network-bridge "$@" vifnum=1 netdev=eth1

ORCA

/opt/Camano-3.1/config/ec2.site.properties
ec2.img.proxy.use=true

ec2.img.proxy.url=http://192.168.1.100/axis2/services/IMAGEPROXY

ec2.img.proxy.timeout=3600

ec2.ami.name=emi-499D16C3

ec2.aki.name=eki-A3B01BDD

ec2.ari.name=eri-991917F8

ec2.instance.type=m1.small

ec2.ssh.key=barrowkey

ec2.use.public.addressing=true

ec2.connection.timeout=60

ec2.request.timeout=120

ec2.ping.retries=60

ec2.ssh.retries=10

ec2.startup.retries=5

ec2.use.proxy=true

proxy.type=SHOREWALL-DNAT

proxy.proxy.ip=192.168.1.1

proxy.user=orca

proxy.ssh.key=/opt/Camano-3.1/config/orca-proxy-ssh-key

proxy.script.path=/opt/iptables-scripts

Initialization Scripts

/etc/init.d/start_ORCA.sh
case "$1" in

 start)

 echo -n "Starting orca-barrow-0 in 2 minutes"

 #To run it as root:

 sleep 10

 xm destroy orca-barrow-0

 sleep 4

 xm create /etc/xen/orca-barrow-0.cfg

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 205 ~

 sleep 10

 /opt/eucalyptus-2.0/etc/init.d/eucalyptus-cc start

 /opt/eucalyptus-2.0/etc/init.d/eucalyptus-nc start

 /etc/init.d/eucalyptus-cloud start

 cd /opt/Camano-3.1/tomcat-7; ./start.sh

 cd /opt/imageproxy/axis2-1.5.4/bin; nohup ./axis2server.sh &

 cd /opt/imageproxy/bin; nohup ./seeding /opt/imageproxy

/opt/imageproxy/axis2-1.5.4/imageproxy.db > /opt/imageproxy/logs/seeding.log &

 echo "."

 ;;

 stop)

 echo -n "Stopping orca-barrow-0"

 #To run it as root:

 cd /opt/Camano-3.1/tomcat-7; ./stop.sh

 sleep 4

 /etc/init.d/eucalyptus-cloud stop

 sleep 6

 /opt/eucalyptus-2.0/etc/init.d/eucalyptus-cc stop

 sleep 3

 /opt/eucalyptus-2.0/etc/init.d/eucalyptus-nc stop

 sleep 10

 xm destroy orca-barrow-0

 echo "."

 ;;

 *)

 echo "Usage: /sbin/service start_ORCA.sh {start|stop}"

 exit 1

esac

exit 0

Virtual Router
The following sections provide the files from UAF’s remote server, orca-barrow-0, with only the

uncommented lines displayed because the commented lines have no affect on the system’s

configuration. In addition, any passwords, encryption keys, or other security information is masked or

changed. orca-barrow-0 is a single server that resides in a server room in Barrow, AK. The files

consider its public IP address to be “public.IP.address,” and it is private, internal IP address

ranges as displayed in Figure 2. ORCA Remote Server.

ORCA

A single-server remote server installation is very similar to a canonical ORCA cluster behind a DNAT

Server [1], except that it does not use Shorewall to control iptables on the DNAT Server. Instead, the

remote server uses modified RENCI scripts to control iptables on the virtual DNAT Server directly. Thank

you to Dr. Brian Hay, University of Alaska Fairbanks, for modifying the /opt/iptables-scripts files.

/opt/iptables-scripts/README.txt
These scripts were created to circumvent using Shorewall DNAT server, as RENCI

prescribes. In order to "fit" an entire ORCA installation on one server, UAF

ORCA architecture uses a Virtual Machine named "dnat-server" as a router, which

is turned on in the host server's startup sequence. This set up seems to

create problems for Shorewall, and so we created this work-around by modifying

/opt/shorewall/dnat-scripts created by RENCI. Instead of using shorewall to

modify the dnat-server iptables, these scripts do so directly. Like Shorewall,

iptables-scripts write a rule into iptables and then restarts iptables.

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 206 ~

Unlike Shorewall, iptables is first populated with DNAT and SNAT rules so that

Dom0, which contains ORCA, Eucalyptus, and Image Proxy, can communicate with

the dnat-server DomU. The virtual dnat-server then routes these communications

to the Internet. Please refer to /etc/iptables.rules on the dnat-server for an

example.

/opt/iptables-scripts/execCmd.sh
set -e

SCRIPT=`readlink -f $0`

INSTALLPATH=`dirname $SCRIPT`

. $INSTALLPATH/lib/helpers.sh

. $INSTALLPATH/lib/iptables-helpers.sh

if ["$1" = ""] || ["$2" = ""] || ["$3" = ""]; then

 echo "STATUS=ERROR; MSG=\"Expecting [ADD|DEL] ip port\" "

 exit 1

fi

CMDCONT="$1 $2 $3"

RES=$(cmdHelper $CMDCONT) || {

 echo "STATUS=ERROR; $RES"

/opt/iptables-scripts/lib/iptables-helpers.sh
DNAT_FIRST_PORT=6001

DNAT_LAST_PORT=6999

PUBIP="public.IP.address"

SHOREWALL=`which shorewall-wrapper`

DNAT_CHAIN="PREROUTING"

RULESFILE="/tmp/rules"

function cmdHelper ()

{

 CMD=$1

 HOST=$2

 HOSTPORT=$3

 RES="NOTSET"

 if ["$CMD" = "ADD"]; then

 RES=$(addDNATRule $HOST $HOSTPORT) || {

 echo $RES

 return 1

 }

 echo $RES

 return 0

 fi

 if ["$CMD" = "DEL"]; then

 RES=$(delDNATRule $HOST $HOSTPORT) || {

 echo $RES

 return 1

 }

 echo $RES

 return 0

 fi

 echo "Invalid syntax"

 return 1

}

function getPorts ()

{

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 207 ~

 if ["$1" == ""]; then

 return 1

 fi

 PORTS=`sudo /sbin/iptables -t nat -n -L $1 2>/dev/null| gawk 'BEGIN { FS

= "[\t:]+" }

$7 ~ /dpt/ {print $8}'` || {

 return 1

 }

 echo $PORTS

 return 0

}

function findFreeDnatPort ()

{

 USEDPORTS=$(getPorts $DNAT_CHAIN) || {

 return 1

 }

 FREEPORT=`echo "" | gawk -v used="$USEDPORTS" -v first="$DNAT_FIRST_PORT"

-v last="$DNAT_LAST_PORT" 'BEGIN { RS=" "; }

{

 n=split(used, arr, " ")

 asort(arr)

 port=first

 found=-1

 i=1

 while(found<first && port<=last && i<=n) {

 if (arr[i]<port) {

 i++

 } else if (port==arr[i]) {

 i++

 port++

 } else {

 found=port

 }

 }

 print found

}'`

 test $FREEPORT -eq -1 && {

 echo ""

 return 1

 }

 echo $FREEPORT

 return 0

}

function checkIP ()

{

 RES=`echo $1 | gawk 'BEGIN { RS=" " }

$0 ~ /[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+/ { print $0 }'`

 if ["$RES" = ""]; then

 return 1

 fi

 echo $RES

 return 0

}

function checkPort ()

{

 RES=`echo "" | gawk -v port=$1 'BEGIN { RS=" " }

{

 if (port>0 && port < 65535)

 print port

}'`

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 208 ~

 if ["$RES" = ""]; then

 return 1

 fi

 echo $RES

 return 0

}

function checkDNATRule ()

{

 #FN=$RULESFILE

 HOST=$1

 R=$(checkIP $HOST) || {

 echo "Invalid host $HOST"

 return 2

 }

 HOSTPORT=$2

 R=$(checkPort $HOSTPORT) || {

 echo "Invalid port $HOSTPORT"

 return 2

 }

 #PAT="DNAT\t\tnet\t\t$DNAT_CHAIN:$HOST:$HOSTPORT"

 #RES=`gawk -v pat="$PAT" '$0 ~ pat { print $5}' $FN`

 PAT="DNAT.*dpt:[0-9]* to:$HOST:$HOSTPORT "

 RES=`sudo /sbin/iptables -t nat -L $DNAT_CHAIN -n | gawk -v pat="$PAT"

'$0 ~ pat { print $7 }' | gawk -F ":" '{ print $2 }' `

 if ["$RES" = ""]; then

 return 0

 else

 echo $RES

 return 1

 fi

}

function addDNATRule ()

{

 FN=$RULESFILE

 HOST=$1

 R=$(checkIP $HOST) || {

 echo "MSG=\"Invalid host $HOST\""

 return 2

 }

 HOSTPORT=$2

 R=$(checkPort $HOSTPORT) || {

 echo "Invalid port $HOSTPORT"

 return 2

 }

 lock_file $FN

 # check if rule exists

 RES=$(checkDNATRule $HOST $HOSTPORT) || {

 echo "MSG=\"RULE EXISTS\"; HOST=$HOST; PORT=$HOSTPORT;

PUBIP=$PUBIP; FWDPORT=$RES"

 unlock_file $FN

 return 0

 }

 # find free port

 LOCPORT=$(findFreeDnatPort) || {

 echo "MSG=\"Unable to find free port\""

 unlock_file $FN

 return 1

 }

 #echo "DNAT net $DNAT_CHAIN:$HOST:$HOSTPORT tcp

 $LOCPORT" >> $FN

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 209 ~

 sudo /sbin/iptables -t nat --append $DNAT_CHAIN --destination $PUBIP --

proto tcp --dport $LOCPORT -j DNAT --to-destination $HOST:$HOSTPORT

 unlock_file $FN

 echo "MSG=\"ADDED\"; HOST=$HOST; PORT=$HOSTPORT; PUBIP=$PUBIP;

FWDPORT=$LOCPORT"

 return 0

}

function delDNATRule ()

{

 FN=$RULESFILE

 HOST=$1

 R=$(checkIP $HOST) || {

 echo "MSG=\"Invalid host $HOST\""

 return 2

 }

 HOSTPORT=$2

 R=$(checkPort $HOSTPORT) || {

 echo "MSG=\"Invalid port $HOSTPORT\""

 return 2

 }

 lock_file $FN

 RULES_TO_DELETE=`sudo /sbin/iptables -t nat -L $DNAT_CHAIN -n | grep -v

"^Chain" | grep -v "^target" | grep -n "DNAT.*$PUBIP.*dpt:[0-9]*

to:$HOST:$HOSTPORT " | gawk -F ":" '{ print $1 }' | sort -r`

 #echo $RULES_TO_DELETE

 if ["$RULES_TO_DELETE" = ""]; then

 echo "MSG=\"NO RULE TO DELETE\"; HOST=$HOST; PORT=$HOSTPORT"

 else

 for r in $RULES_TO_DELETE; do

 sudo /sbin/iptables -t nat --delete $DNAT_CHAIN $r

 echo "MSG=\"DELETED\"; HOST=$HOST; PORT=$HOSTPORT"

 done

 fi

 unlock_file $FN

 #PAT="DNAT\t\tnet\t\t$DNAT_CHAIN:$HOST:$HOSTPORT"

 #lock_file $FN

 #FNTMP=/tmp/`basename $FN`.new

 #cat $FN | sed '/^'"$PAT"'/ d' > $FNTMP

 #cp $FNTMP $FN

 #rm -f $FNTMPS

 #unlock_file $FN

 #echo "MSG=\"DELETED\"; HOST=$HOST; PORT=$HOSTPORT"

 return 0

}

function kickShorewall ()

{

 #$SHOREWALL restart > /dev/null 2>&1 || {

 # note that refresh does not invalidate existing connections,

 # so even the deleted connection stays on

 # return 1

 #}

 return 0

}

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 210 ~

Networking

/etc/network/interfaces
auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 address 192.168.1.1

 broadcast 192.168.1.255

 netmask 255.255.255.0

auto eth1

iface eth1 inet static

 # networking for Barrow, AK

 address public.IP.address

 netmask public.IP.netmask

 broadcast public.IP.broadcast.address

 gateway public.IP.gateway

/etc/iptables.rules
*nat

:PREROUTING ACCEPT [5:440]

:POSTROUTING ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 12080 -j DNAT --to-

destination 192.168.1.100:12080

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 11080 -j DNAT --to-

destination 192.168.1.100:11080

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 11443 -j DNAT --to-

destination 192.168.1.100:11443

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 11081 -j DNAT --to-

destination 192.168.1.100:11081

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 8443 -j DNAT --to-

destination 192.168.1.100:8443

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 12443 -j DNAT --to-

destination 192.168.1.100:12443

-A PREROUTING -d public.IP.address/32 -p tcp -m tcp --dport 222 -j DNAT --to-

destination 192.168.1.100:22

-A POSTROUTING -s 192.168.1.100/32 -j SNAT --to-source public.IP.address

-A POSTROUTING -s 192.168.1.101/32 -j SNAT --to-source public.IP.address

-A POSTROUTING -s 192.168.1.102/32 -j SNAT --to-source public.IP.address

-A POSTROUTING -s 192.168.1.103/32 -j SNAT --to-source public.IP.address

-A POSTROUTING -s 192.168.1.104/32 -j SNAT --to-source public.IP.address

COMMIT

*filter

:INPUT ACCEPT [3083:279267]

:FORWARD ACCEPT [96899:11149697]

:OUTPUT ACCEPT [18425:2683358]

-A INPUT -m state --state ESTABLISHED -j ACCEPT

-A INPUT -d public.IP.address/32 -p tcp -m tcp --dport 22 -j ACCEPT

COMMIT

Initialization scripts

/etc/init.d/start_iptables.sh
case "$1" in

 start)

 echo -n "Starting iptables"

 sleep 10

 iptables-restore /etc/iptables.rules

 echo "."

 Volume III: Software Design for Mutualistic Software Services (MSS) Version 1.0

~ 211 ~

 ;;

 stop)

 echo -n "Stopping dnat-server"

 /sbin/iptables –-flush

 /sbin/iptables --delete-chain

 /sbin/iptables –t nat --flush

 /sbin/iptables –t nat --delete-chain

 echo "."

 ;;

 *)

 echo "Usage: /sbin/service start_iptables.sh {start|stop}"

 exit 1

esac

exit 0

/etc/init.d/send_mailPowerloss.sh
case "$1" in

 start)

 echo -n "Mailing Administrator about power interruption"

 sendmail -v jquan2@alaska.edu < /etc/mail/ORCA_RESTARTED_MSG.txt

 echo "."

 ;;

 stop)

 echo -n "Stopping send_mailPowerLoss.sh"

/etc/init.d/sendmail stop

 echo "."

 ;;

 *)

 echo "Usage: /sbin/service send_mailPowerLoss.sh {start|stop}"

 exit 1

esac

exit 0

 Software Testing for Mutualistic Software Services (MSS) Version 1.0

Volume IV

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 213 ~

Software Testing for

Mutualistic Software

Services (MSS)

Version 1.0

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 214 ~

1. Introduction
This volume tests MSS according to the requirements in Software Architecture for Mutualistic Software

Services (MSS) Version 1.0, which were synthesized from the Software Requirements Specification for

Mutualistic Software Services (MSS) Version 1.0. The tests compare the intended actions listed in 5.3

Component Model of the Software Architecture document with the actual outcome when using MSS.

Section 3. Tested Components below presents screenshots where appropriate as an example of the test

case.

2. Test Criteria
Testing will use the relationship tree provided in the software architecture’s section 5. Architectural Plan

as a testing template. Here is the testing relationship tree:

The ORCA Actor Registry (node 1)

^ │

 Heartbeats└── UAF – orca-uaf-2 (node 2)

^ ├── Admin Uaf

 Heartbeats└── ├─────── Barrow, AK – orca-barrow-0 (node 3)

 │ ├── Admin Barrow

 │ ├── John Quan’s MacBook (physical)

 │ │ └── John Quan

 │ └── 199.165.126.136-6001 (virtual)

 │ └── User Barrow

 ├── John Quan’s MacBook (physical)

 │ └── John Quan

 └── 199.165.76.87 (virtual)

 └── User Uaf

In addition, testing must evaluate the following basic criteria:

 Work on multiple browsers, to include the text-based browser w3m

 Work on a canonical ORCA cluster

 Work on a Remote Server

 Support virtual resources

 Support physical resources

 Check for heartbeats at the MSS-ORIGIN

 Only allow MSS access to authorized users on authorized computers

The Software Architecture for Mutualistic Software Services (MSS) Version 1.0, Appendix B contains the

component diagram. The component diagram CM-1 represents the external connections, and the data

flow model DM-1 represents the generation and flow of data for each MSS-ENTITY.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 215 ~

3. Tested Components

3.1 Databases

3.1.1 Service Data

 Holds the subset of service attribute data of its MSS-ENTITY

o See the Services Database in the Software Design for Mutualistic Software Services

(MSS) Version 1.0.

3.1.2 CF Data

 Holds the MSS-ENTITY data for itself. For instance, ORCA uses database orca

3.1.3 User Data

 Holds the authorized user’s data for itself and its child MSS-AFFILIATES (actors)

o See the Users Database in the Software Design for Mutualistic Software Services (MSS)

Version 1.0.

3.2 Components

3.2.1 CF

 MSS-ORIGIN presents an interface to its children to receive heartbeats

Figure 3. The ORCA Actor Registry

 MSS-AFFILIATES deliver heartbeats to its MSS-ORIGIN

o See Figure 3. The ORCA Actor Registry.

 Provides a CF interface with a list of current donors. For instance, ORCA provides the ORCA

Actor Registry [18]

o See Figure 3. The ORCA Actor Registry.

 Provides a list of available resources to GENI experimenters and users

o See Figure 3. The ORCA Actor Registry.

 Enables GENI experimenters and users to request resources

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 216 ~

Figure 4. MSS does not interfere with CF functionality.

3.2.2 User Interface

 Uses the Authentication process to verify actor and user requests

Figure 5. The administrator must authorize clients

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 217 ~

Figure 6. The administrator must specify a sponsor

Figure 7. The administrator must authorize users.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 218 ~

Figure 8. The administrator assigns users to actors.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 219 ~

 Assign Users does not display for text-based web browsers, but it does for graphical web

browsers. This is only a partial fulfillment of the requirement, but it does not seem to detract

from the functionality of MSS. MSS incorporates text-based web browsing functionality for

Eucalyptus Instance users and not administrators.

Figure 9. "Assign Users" does not display for w3m.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 220 ~

Figure 10. MSS only allows authorized users on authorized computers.

Figure 11. w3m version of "not authorized" response.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 221 ~

Figure 12. MSS only accepts authorized users.

Figure 13. The administrator can remove actor authorization.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 222 ~

Figure 14. The administrator can remove user authorization.

Figure 15. MSS displays authorized users to the administrator.

 Receives a list of MSS-ENTITY resources from the CF

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 223 ~

Figure 16. MSS provides ORCA actor information.

 Receives user service information and service requests

Figure 17. User service information shows available vs installed services.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 224 ~

Figure 18. MSS incorporates user session expiration.

 Provides service delivery information to the Service Interface

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 225 ~

Figure 19. The Download Service page provides success/failure information.

 Triggers the Service Interface to deliver services

o See Figure 21. User can request to download service ID 1

 Checks for heartbeats on the CF interface

o See the sh_check_heartbeats command in the Software Design for Mutualistic Software

Services (MSS) Version 1.0.

 Triggers the Service Interface to download services.

o See Figure 21. User can request to download service ID 1

3.2.3 Service Interface

 Receives a service information request from the User Interface

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 226 ~

Figure 20. Administrators choose a subset of services to advertise.

 Receives a service download request from the User Interface

Figure 21. User can request to download service ID 1

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 227 ~

Figure 22. All users can uninstall services, but only administrators can do so immediately.

Figure 23. MSS maintains permissions on "Delete Services"

 Uses the Encryption process to encrypt services

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 228 ~

o See the Bash Scripts sh_rsync_command and sh_ssh_command in the Software Design

for Mutualistic Software Services (MSS) Version 1.0.

 Uses the Decryption process to decrypt services

o See the Bash Scripts sh_rsync_command and sh_ssh_command in the Software Design

for Mutualistic Software Services (MSS) Version 1.0.

 Uses the Validation process to validate services

o See the compare_shasum() function in functions_shell.php of the Software Design for

Mutualistic Software Services (MSS) Version 1.0.

 Receives services from parent MSS-ENTITY

Figure 24. Service query of the sponsor.

 Delivers services to child MSS-AFFILIATES

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 229 ~

Figure 25. "Choose Service" on Internet Explorer

3.2.4 User Web Site

 (Version 2.0) Delivers service content to service users

 (Version 2.0) Enables MSS-CENTER/MSS-DEVELOPERS to add service content

 (Version 2.0) Delivers GENI information as required by MSS-CENTER

 (Version 2.0) Enables users to email MSS-CENTER/MSS-DEVELOPERS

3.2.5 Administrator Web Site

 (Version 2.0) Delivers administrative content to MSS administrators

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 230 ~

Figure 26. Delivers tailored instructions according to user permissions.

 (Version 2.0) Allows MSS-CENTER/MSS-DEVELOPERS to add administrative content

 (Version 2.0) Delivers GENI information as required by MSS-CENTER

 (Version 2.0) Enables users to email MSS-CENTER/MSS-DEVELOPERS

3.2.6 Developer Uploads

 (Version 2.0) Allows enrolled MSS-DEVELOPERS to add services

 (Version 2.0) Allows enrolled MSS-DEVELOPERS to add service descriptions

 (Version 2.0) Enables MSS-CENTER to approve services

 (Version 2.0) Enables MSS-CENTER to approve service descriptions

3.3 Service Repository

3.3.1 File System

 Holds MSS services

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 231 ~

Figure 27. MSS Services subset downloaded to an Apple MacBook.

Figure 28. The services subset matches the Attribute Tree.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 232 ~

Figure 29. Eucalyptus Instance downloads from MSS on a canonical ORCA cluster.

 (Version 2.0) Holds all MSS services for MSS-CENTER

 Holds a subset of parent services, to include the entire subset, for its MSS-AFFILIATES

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 233 ~

Figure 30. MSS delivers a services subset and rebuilds the Services DB.

 Volume VI: Software Testing for Mutualistic Software Services (MSS) Version 1.0

~ 234 ~

4. Evaluation
The MSS system meets all criteria listed for Version 1.0, excepting that the page Assign Users does not

display in the text-based browser w3m. However, the testing committee believes that this is an

unnecessary requirement because only administrators use this page and not Eucalyptus Instance users,

for which the w3m requirement exists. Assign Users works well in graphical web browsers, and this

committee doubts that an administrator would prefer using a text-based browser with a limited feature

set to a full-featured graphical web-browser, such as Internet Explorer, Firefox, Safari, or Chrome.

The testing committee did find several areas for improvement in MSS, which are listed below in order of

importance:

Feature Problem Solution

No separate
password()
function

add_user.php has the
administrator type in a new user’s
password twice to verify a correct
entry, but it performs no strong
password checking. One could
make the user’s password as simple
as “a” or even blank.

Version 1.0 does not include a strong
password-checking requirement, but we
believe every web-facing server should
perform this. This code is widely
available, and a web search for “php
strong password checker” listed many
links.

Rebuilding the
client’s Services
database

This functionality is effective, but
incredibly slow. For instance,

rebuilding the orca-barrow-0
database from orca-uaf-2 took 2
minutes 40 seconds, even with a
very small attribute tree. This is
mostly due to a very slow network
connection, but the system is
designed to open an SSH connection
for each entry in all of the Services
tables.

Connect only twice from sponsor to client
when rebuilding the Services database,
instead of connecting for each entry (14
separate connections in testing).
Developers can accomplish this by writing
the rebuild to a SQL file, passing the file
to the client (connection one) and then
sending an SSH command (connection
two) to load the file into SQL. The SQL
code should combine all of the SQL
statements into one file. Since each
connection to Barrow takes about 5
seconds, this would reduce the total
Services database rebuild to about 10
seconds.

Firefox display
malfunction

Firefox does not display quotes in
the instructions correctly.

Define the format between the
<pre></pre> tags in the user instruction
set.

Attribute tree
display malfunction

w3m does not display “{1} MSS The
root of MSS” correctly. The words
“The root of MSS” are aligned all the
way to the right of the page. All
graphical web browsers present the
attribute tree properly.

By viewing the source HTML, one sees
that there are too many </table> end
tags. Format this section so that the
attribute tree does not contain
unnecessary tags. The testing committee
was unable to repair this malfunction
after a short time of troubleshooting.

