3/23/25, 4:37 PM Roll your own chroot container

________________ ',r'______l e
Roll your	;		-------		8d 35 fa ff
own chroot	+ F----	------ 5, Fommm ot -	ff ff		
container		7 Y e A	83 c6 11		
I R R I S I I O O	31 c9 I				
I I S I A N IR B Y IOV I O	83 c1 13 I				
I R B N N e Y P ATV	f3 a4 I				
for	\	+-+]			n----7 ---
- reversing	\Ne-o	#-t--- ---	by Orion		
- analysis					
- archival	-1	-		alaska.edu>	

A chroot container lets you run a binary inside a custom-built filesystem,
and is a good way to constrain code execution, and to understand how a binary
actually runs.

UNIX's 'everuthing is a file' concept means modern file systems expose a huge
attack surface with many suid executables, named pipes, and sensitive temp
files. & chroot container denies this access by default, but isn't bloated
like docker.

I

I

| #bin |chroot filesystem| Set up by you, tiny and light | |
5 | |
setc I		
shomesyour/chroot	#	
susr	#bin Only contains the utility programs you want	
sdev	#1lib Shared libraries you decide to include	
I Jproc | setc Sanitized or customized config files | i
chroot.e: ; ---- ch'ing the root filesustem ----

Syntax: sudo chroot <path to new root directory: <command to run there:

Start by making a directory with the binary you want to run:
mkdir -p Shomesyour/chroot

cd Shomesyour/chroot

mkdir bin

cp fbinfbash binssh

The chroot command just takes the path to the new filesustem:
% sudo chroot shomesyourschroot sbinsdsh

This will basically always fail with:
chroot: failed to run command 'sbinssh': No such file or directory

If the binary exists, it's missing a shared library loaded by that binary.

Check the shared libraries used with the ldd script:
% 1dd hinssh

https://tmpout.sh/4/9.html

1/4

3/23/25, 4:37 PM Roll your own chroot container

The kernel provides linux-vdso.so.l, but you need to make everything else.
This degree of shared library control can be very handy to run ancient
binaries, or if you need to gdb a particular combo of lib versions without
bricking your host system.

On a recent armgd linux machine, I needed:

$ mkdir lib

% cp Alib/ld-linux-aarched.so.1 lib

% cp Alibsaarched-linux-gnuslibtinfo.so.6 lib

% cp Alibsaarched-linux-gnuslibc.so.6 lib
That's the dunamic linker ld-linux, ncurses, and the C standard library.
We're dumping them all into lib/ wherever they came from.

On =86_64 linux, binaries have /libgd/1d-linux-=86-64.s0.2 hardcoded, but
will look for all their other libs in #lih.

Run your ld-linux .so with “--help" (it's a runnable ELF binary!) to get
the full list of lib paths it will search in. (ldd is ld-linux.so --list).

Once the libraries are in place, try the chroot again:
% sudo chroot shomesyourschroot fbinssh

bash-5.2% echo It Horks

It Horks

bhash-5.2# ls

bash: ls: command not found

bash-5.2# echo =*

hin lib

bash-5.2#% cd bin

bash-5.2# echo =*

sh

D

Shell builtins work fine, like cd or echo or pwd, but not ls.

Let's fix that!
% cp fbinfls bindls
% sudo chroot shomesyourschroot fbinssh
sh-5.24% 1s
l1s: error while loading shared libraries: libselinux.so.l1:
cannot open shared object file: Mo such file or directory

1dd on binsls shows I need libselinux.so.1 and libpcreZz-8.so0.6, and

then ls works ... ish?
sh-5.78% 1= -1
total &

druxrwxr-x 2 1aaa 1666 4896 Dec 19 26:35 bin
druxruxr-x 2 1606 1606 4636 Dec 19 26:36 lib

File owner and group are shown numerically, since we don't have an Jetc yet.

111311111111

chroot.1: ; ---- strace all the syscalls ----

Usually when a program mishehaves in a chroot, it's because it needs some
random files, and the hard part is figuring out swhich# files it wants where.

Syntax: strace <command to run:
Output: ewvery kernel suscall made by that command as it runs
https://tmpout.sh/4/9.html 2/4

3/23/25, 4:37 PM Roll your own chroot container

Let's use strace to watch exactly what syscalls ls makes in our chroot:
% cp Afusrfbindstrace bind
(Do the ldd dance to get strace running in the chroot)
% sudo chroot shomesyourschroot fbinssh
sh-5.2#% strace ls -1
execvel''shinsls", ["1s", "-1"1, @xfffff79532cs8 /% 17 vars /) = 0
... lag+ lines of shared libraries thrashing around ...
openat (AT_FDCHD, "setc/passwd", O_RDOWLY|O_CLOEXEC) = -1 ENOENT
{Wo such file or directory)

Trapped in the huge spew of library bloat is the one file we need to add,
the famous Aetc/passwd. We can just make up a username for this file:

mkdir etc

% cat » etc/passud
lol:x:1666: 1606 :never: /gonnasgivesyou: shinsup

D

Trying this from inside the chroot, our fake username works!
sh-5.24 1s -1

total 12

druxruxr-x 2 lol 1888 4835 Dec 19 28:58 bin

druxruxr-> 2 lol 188a 4835 Dec 19 28:56 etc

druxruxr-x 2 lol 1866 4836 Dec 19 26:36 lib

But the group is still listed numerically. Checking strace again, we see
another ENOENT when ls tries to open Afetc/group, so we just make one:

% cat » etc/eroup
nope:x:16ag:
0
sh-5.24 1s -1
total 12
druwxru<r-x 2 lol nope 4835 Dec 19
druwxru<r-x 2 lol nope 4835 Dec 19
druwxru<r-x 2 lol nope 4835 Dec 19

A:56 hin
J:74 etc
A:36 1lib

[I e]
S D0 E

Most programs don't check things very closely, so you can fake things
in Jsproc or Adev with just flat files: echo predictable > dev/random
will silently backdoor most crupto inside the chroot!

Some programs require access to Sproc or fsys, so if you can tolerate the
attack surface you can just bind mount the real thing into your chroot:

% mount -0 bind Adev dewv

% mount -o bind Aproc proc

mount -0 bind fsys sys
(But try faking it, it's more controllable and surprisingly effective.)

111311111111

chroot.2: ;3 ---- chroot jailbreak ----

In a complicated system chroot has a lot of escape opportunities:
https:/sgithub. comsearthguakes/chuwaat

Everything the kernel touches except the filesystem is still accessible:
- process lists and kill(), so 'kill -9 -1 will still nuke the box
- network access (the attacker is coming from 127.6.6.1 or ::1/1281)
- device access (in the chroot, mknod /dev/ssda and mount escape)

https://tmpout.sh/4/9.html 3/4

3/23/25, 4:37 PM Roll your own chroot container

True container systems are guite an evolution from a basic chroot:
- Podman or Docker or LXC isolate the network, FIDs, and cgroups
- FreeBsDh jails allow syscall translation and network isolation

111311111111

chroot.3: ; ---- architectural chroot ----

A working chroot is a fully encapsulated system, with binaries and libs, =o
you can move it between machines easily. an "architectural chroot"
can help you run binaries from other CPUs like x86/armsrisc-v/mips.

On modern linux, "sudo apt install gemu-user-static' makes chroot
automagically run binaries from any of the 34{!) supported architectures.

On older linux, you can register the ELF header and emulator into
dorocssussfssbinfmt _miscsregister wvia a binary mask of the ELF hits.

Chroot is under-rated for cross-platform reversing and analysis: you can grab
an old MIFS or ARM3Z firmware image, run its binaries in a chroot, and try
even GOTAPLTAROF wulns using your desktop CPU but the old libs and binaries.
iAlso useful for running your favorite old tools/game on new hardware!)

111311111111

chroot.FF: ; ---- bonus challenges ----
Easy:
- Build a chroot from one of your boxes.
- Copy your chroot to another CPU arch (=86, arméd, risc-v) and run it.

Hard:
- Use binwalk to pull a filesustem image from a firmware update file,
and use (architectural) chroot to get it running on your machine.
- Get a CUDA program running inside a chroot.

--[PREV | HOME | MNEXT 1--

https://tmpout.sh/4/9.html 4/4

