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Abstract

We introduce an interactive parallel rendering
system based on the impostors technique. Im-
postors increase the latency tolerance of an inter-
active rendering system, which allows us to use
the power of the parallel machine even at high
resolutions and framerates. Impostors also de-
crease the required rendering bandwidth, which
makes possible the interactive use of advanced
rendering techniques like antialiased raytracing.
These techniques are demonstrated by the inter-
active high-quality rendering of very large higly
detailed models.

1 Introduction

A central goal of computer graphics research is
to accurately render large environments full of
detailed geometry very quickly. For example,
global illumination methods can accurately ren-
der the details of surface and subsurface light
transport, but have well known limitations on
model size and speed. Modern graphics hard-
ware rendering can render large models quickly,
but sacrifices accurate light transport. Because
none of today’s systems provide enough accu-
racy, size, detail, and speed; the present goal
of computer graphics is to simply increase these
quantities.

The approach we pursue is motivated by a
simple observation: in interactive rendering, as
the camera moves through the scene, the ap-
pearance of most objects does not dramatically

change from frame to frame. Typical render-
ing methods re-render all the objects for each
frame; but the existing impostors [MS95] or im-
age caching [SS96] approach renders the object
once, then caches and reuses the rendering over
several frames. The rendering is stored as an
alpha-blended texture, and can be rendered as a
texture-mapped polygon—an impostor. Because
rendering an impostor is faster than rendering
the object, the impostor approach amortizes the
rendering cost of complicated objects over sev-
eral frames.

The enabling technology we present is to
quickly render the impostors using a parallel
server. The challenge with this approach is that
the scene partitioning into impostors, and the
amount of rendering effort required for each part
of the scene, are both highly viewpoint depen-
dent. This means that for good parallel load
balance, the parallel backend must shift respon-
sibility for rendering different parts of the scene
between processors. To perform this load bal-
ancing, we use our parallel work migration and
load balancing system [LK03], as described in
Section 4.

Using a parallel machine provides computa-
tional power that can be used to improve the
rendering accuracy and detail. We describe
techniques to antialias the impostors, compute
both direct as well as partial indirect lighting,
and procedurally generate needed detail, as de-
scribed in Section 6.

Using impostors and parallel machines allows
us to render very large geometries, such as large
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virtual environments, at real-time frame-rates.
We will demonstrate this by exploring an ex-
tremely large, detailed model of the University
of Illinois at Urbana-Champaign campus, as de-
scribed in detail in Section 5.

The architecture we propose renders impos-
tors on a parallel machine potentially miles away,
then transmits them to the serial client machine
sitting on the user’s desk. The client machine
then assembles the 3D scene by drawing individ-
ual 2D impostor images as textured polygons us-
ing conventional graphics hardware. The overall
data flow is as shown in Figure 1, the underly-
ing equations governing this method are derived
and analyzed in Section 2, and the features and
advantages of the impostors approach to image
assembly are described in Section 3.

2 Fundamentals

This section analyzes the fundamental relation-
ships that motivate and limit the usability of im-
postors. The overall conclusion of this section
is that impostors provide a degree of flexibility
that an intelligent rendering system can exploit
to solve existing problems with rendering effi-
ciency.

2.1 Hardware Performance

We have performed a detailed cost analysis for
the rendering performance of modern graphics
hardware, as shown for a variety of cards in
Appendix A.2. The analysis shows that the
achieved fill rate, or overall system throughput
as measured in pixels per second, drops dramat-
ically for small triangles; but as we show, im-
postors can restore the fill rate without affecting
image quality.

The time t to draw a triangle on modern
graphics hardware is well modeled by

t = max(α, β(s + γr)) (1)

Here, α is the triangle setup time, typically
around 100ns/triangle. β is the pixel time, typ-
ically around 2ns/pixel. α is also the inverse
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Figure 2. Achieved fill rate for nVidia GeForce3/Pentium 4.

of the maximum triangle rate (triangles per sec-
ond), and β the inverse of the pixel fill rate (pix-
els per second). s is the total area in pixels in the
triangle, and r is the number of rows of pixels
in the triangle. γ is the per-row pixel pipeline
startup time, measured in pixels per row. We
find γ = 3 pixels/row fits most modern cards
well; Appendix A.2 gives measured α and β for
a variety of graphics hardware.

The max() in the performance model is a nat-
ural result of the on-chip parallelism of modern
graphics hardware. In a pipeline, throughput
is limited by the slowest component, and this
model contains two pipeline components: α, to
represent vertex and triangle setup; and the β
term, which represents row setup and pixel ren-
dering.

The first thing to notice about this model is
that in order to fully utilize the card’s fill rate,
the fill rate β term must dominate. If the tri-
angle rate α term dominates, we could increase
the area s of each triangle without increasing the
per-triangle time. To see this another way, ex-
amine the achieved pixel fill rate BC (pixels per
second):

BC =
s

t
=

s

max(α, β(s + γr))

BC = min(
s

α
,

1
β(1 + γr/s)

) (2)

For small triangles, the triangle setup α term
limits the overall performance. Thus to achieve
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Figure 1. Our client/server graphics architecture.

close to peak fill rate, the triangles must be large.
For current hardware, “large” means triangles
on the order of 10 pixels across—Figure 2 shows
a typical plot of this; Appendix A.2 shows the
effect in detail.

But to accurately represent curved geometry,
we would prefer to render using small triangles,
often just a few pixels across. As a piecewise lin-
ear approximation to curved geometry, triangles
of physical size h have a geometric discretization
error in O(h2), so directly using large triangles
instead of small triangles may create unaccept-
able geometric distortion.

Impostors provide a solution to this problem.
By first rendering a set of accurate, small tri-
angles into a single large impostor, we can then
perform more efficient rendering with the larger
impostor. If the source triangles are very small,
on the order of a single screen pixel, rendering
the larger impostor could be 50 times faster,
because rendering the large impostor is fillrate-
dominated, while rendering the small triangles is
triangle setup-dominated.

This situation is remarkably similar to that
encountered in parallel computing when send-
ing many small messages—the per-message costs
overwhelms the per-byte cost, and link utiliza-
tion is low. The similar solution in parallel com-
puting is to use message combining [KKV03],
where small messages are assembled into larger
messages.

2.2 Update Rate

As the camera moves, our 2D impostor images
must be updated to follow the true 3D geometry
of the object they represent. This section ana-
lyzes how often the impostors must be updated,
as this geometric update rate places fundamental
limitations on the benefit provided by impostors.
The simplest effect to analyze, and the worst case
of camera motion, is parallax. We analyze this
simple case in detail to bound the geometric re-
projection limits for our method. Note that im-
postors might need to be updated for other rea-
sons such as deforming model geometry, chang-
ing specular reflections, or other view-dependent
lighting effects; but parallax is something all ob-
jects will have to handle. Also, we analyze (and
use) simple planar impostors; a similar analysis
holds for non-planar “meshed impostors”.

Consider a thin bar aligned with the z axis and
centered at world coordinates (0, z), as shown
in Figure 3. Our perspective model is simply
s = kx/z, which converts world coordinates
(x, z) to screen pixels s. The eye and the center
of projection are hence both at the origin, and k
is the distance to the projection plane, or equiv-
alently the number of pixels seen at a 45 degree
field of view.

We begin by choosing the impostor plane z,
shown by the dashed line, and project our ob-
ject onto a texture lying in this plane. Initially,
the projection is perfect—we can’t tell the ob-
ject has been replaced by the impostor, because
the impostor is pixel-for-pixel identical. We la-
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bel the distance from the impostor plane to the
most distant object point d, the depth of the ob-
ject beyond the impostor plane.

If the camera moves down the x axis, to
(−f, 0), this is equivalent to moving the object
to the new position (f, 0). If after moving the
camera we re-use the old impostor, there will be
a quantity ∆x of projection error between the
impostor and the true projected geometry. This
error will normally be worst at the extrema of
the object, so we examine the projected shift of
the closest corner point.

Because 4ABE and 4CDE are similar tri-
angles, the projected geometric error ∆x of the
new corner is:

∆x

d
=

f + ∆x

z

∆x(
1
d
− 1

z
) =

f

z

∆x(
z − d

zd
) =

f

z

∆x =
fd

z − d

Projecting into screen space, we find

∆s = k
∆x

z
= k

fd

z(z − d)

If we fix a maximum screen-space error ∆x,
we can solve for the maximum allowable camera
motion f :

f =
z(z − d)∆s

kd
(3)

d = 0.05 d = 0.25 d = 1 d = 5
z = 1 0.04 0.01 - -
z = 5 0.97 0.19 0.04 -
z = 25 24.37 4.83 1.17 0.2
z = 100 390.4 77.93 19.34 3.71

Table 1. Bound, in meters, on the distance the camera
can safely move for an impostor to stay below one pixel
of parallax error. Resolution is 1024x768 with a 90 degree
horizontal field of view. Impostor distance z and depth d are
in meters.

d = 0.05 d = 0.25 d = 1 d = 5
z = 1 1 1 1 1
z = 5 10 2 1 1
z = 25 263 52 12 2
z = 100 4216 841 208 40

Table 2. Number of frames each impostor can be re-used,
if the camera moves perpendicularly at V =20kmph and the
framerate is H =60hz.

Taking the camera velocity as V meters per
second and the framerate as H frames per sec-
ond, the impostor is guaranteed to be reused for
at least R frames:

R =
fH

V
=

z(z − d)∆sH

kdV
(4)

That is, the minimum reuse rate is propor-
tional to the screen error tolerance and fram-
erate; and inversely proportional to the screen
resolution, impostor depth, and camera velocity.
For distant impostors with z >> d, the reuse
rate is proportional to the square of the distance
from the camera z. This squared proportional-
ity means distant impostors can be reused an
immense number of times.

Table 1 gives examples of the allowed cam-
era motion f , and Table 2 gives the numbers of
frames R the impostor can be reused before the
screen error exceeds one pixel. Distant or very
flat impostors can tolerate enormous amounts of
camera motion, and hence can be reused for a
large number of frames. Very deep or very close
impostors can almost never be reused, as even a
small camera motion causes a visible amount of
parallax change.
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2.3 Bandwidth

The final fundamental limiting factor we con-
sider is the bandwidth between each component
of our system.

Render. In the proposed architecture, im-
postors begin by being rendered on the parallel
machine. The rendering bandwidth BR, in pix-
els per second per processor, depends heavily on
the CPU speed and rendering quality. Clearly,
a high-quality antialiased radiosity-illuminated
image will take much longer than a simple flat-
shaded polygon rendering. A typical aggregate
rendering rate for high-quality splats drawn in
software might be 100,000 to one million finished
pixels per second, which is 400KB/s-4MB/s per
processor. The rendering rate is increased by the
parallel speedup P .

Network. Rendered impostors are shipped
to the client over a TCP-based connection called
CCS, as described in Section 4.3.2. CCS can
saturate fast ethernet (100baseT), providing a
network bandwidth BN of 10MB/s. Gigabit
ethernet should increase the data rate to 50-
100MB/s. Shipping 32-bit pixels means the net-
work compression rate CN is 1/4 pixels/byte.
Using run-length encoding should approximately
double the compression rate for tree-like impos-
tors; while a lossy compression such as S3TC
could increase it fourfold, with increased CPU
cost and some impact on image quality.

Upload. Once in the client’s main memory,
the impostors must be uploaded onto the graph-
ics card. Even a 4x AGP graphics card interface
has a theoretical bandwidth of 1GB/s; but typ-
ical measured upload bandwidths BU , including
mipmapping time, range from 100-300MB/s (see
Appendix A.2 for measurements). The upload
compression rate CU is 1/4 pixels/byte for 32-
bit pixels.

Compositing. The final step is to com-
posite the impostors on the graphics card into
the framebuffer for display. The achievable
fill rate BC for alpha blended, textured and
projected polygons is 80-350Mpix/s (250MB/s-
1.5GB/s pixel bandwidth). The actual achieved
fill rate depends on the triangle area, as shown

in Equation 1.
The impostors method allows rendered,

shipped, and uploaded frames to be reused on
the graphics card several times. We take the
area-averaged impostor reuse rate, bounded by
Equation 4, as R reuses per pixel. This increases
the effective bandwidth of everything up to the
final compositing step by a factor of R.

Because some pixels are drawn several times,
especially with overlapping impostors, overdraw
restricts the overall system performance. We
take the area-averaged rendered depth complex-
ity as D pixels drawn per screen pixel.

Finally, because this is a pipeline, throughput
is limited by the slowest component. The over-
all delivered screen bandwidth B in screen pix-
els per second is simply the minimum rate of
rendering, network transmission, uploading, and
compositing:

B =
min(BRPR, BNCNR, BUCUR, BC)

D

The lowest numerical bandwidth values are for
rendering bandwidth BR; but rendering band-
width can theoretically be scaled up by adding
processors until rendering is no longer the bottle-
neck. In practice, load imbalance and other par-
allel efficiency losses mean the parallel speedup
P may be substantially lower than the number
of processors; Section 4 describes methods for
improving the parallel efficiency.

Because the graphics card bandwidth BC is
so much larger than the other bandwidths, in
order to take advantage of the graphics card’s fill
rate we clearly must reuse impostors a significant
amount. To prevent an uncompressed ethernet
network with BNCN of 2.5Mpix/s from limiting
the overall performance, we would have to reuse
each shipped impostor R = 25-150 times, which
according to Table 2 is only acceptable for very
flat or very distant impostors. Clearly, texture
compression (high CN ) or gigabit ethernet (high
BN ) will be necessary for most scenes.

A balanced high-performance system might
render with a bandwidth of BR = 1 Mpix/s/cpu
with a parallel speedup P = 32, for a render-
ing bandwidth of 32 Mpix/s. The impostors

5



would be shipped over the network using run-
length encoding with CN = 0.5 pixels/byte and
gigabit ethernet with BN = 60MB/s to pro-
vide a network data rate of 30Mpix/s. The im-
postors would then be reused on the graphics
card approximately R = 10 times, which exactly
matches the fill rate bandwidth of BC = 300
Mpix/s. Assuming a depth complexity D = 2,
the overall delivered pixel rate would then be
B = 150Mpix/s, enough for a 75Hz framerate at
1600x1200 resolution. Such a system would fully
utilize nearly all of its components, for excellent
performance.

2.4 Extrema

It is useful to examine the limiting cases of this
parallel rendering system, as summarized in Ta-
ble 3.

Screen Shipping. One could agglomerate all
the geometry of the scene into a single large im-
postor, then ship this one screen-filling impos-
tor to the client. This is the screen shipping
idea used by many parallel rendering systems, in-
cluding parallel raytracers [Sto98] and other sys-
tems such as Chromium [HHN+02]. However,
because the depth range for the scene is huge,
Equation 3 shows the allowable amount of cam-
era motion is tiny—that is, the client can never
reuse the screen image unless the camera is abso-
lutely stationary. With a reuse rate of R = 1, the
rendering and network bandwidth thus required
for even a moderate resolution and framerate us-
ing this technique is enormous—just shipping a
1024x768 screen at 30HZ in 32-bit color would
require 95MB/s of data, which would saturate
gigabit ethernet. That is, screen shipping is lim-
ited by the network data shipping rate.

Point-based Rendering. To avoid the fre-
quent updates of large impostors, we could in-
stead decompose all the geometry of the scene
into very tiny impostors. As the impostor depth
range d drops to zero, Equation 4 shows that the
number of frames of reuse R goes to infinity. This
means our very tiny impostors could be reused
indefinitely; after receiving the initial set of im-
postors, the client would never need anything

more from the server. This is essentially point-
based rendering, which has the well known prob-
lem that the per-triangle cost of modern graphics
cards causes low performance when drawing very
small polygons, as shown in Section 2.1. That is,
point-based rendering is limited by the graphics
card’s triangle rate.

Parallel-plane Rendering. To avoid the
display overhead of very small polygons, we
could decompose the geometry into a series of
impostors representing very thin slices along the
Z axis, such as the Layered Impostors technique
[Sch98]. Because the depth range of the impos-
tors is small, the impostors would rarely need to
be updated. Because the screen area of the im-
postors is large, the impostors make good use of
the graphics card’s fill rate. However, because
all the impostors overlap, there is an incredible
amount of overdraw D, so the delivered screen
performance is low.

Efficient impostor decompositions are not
found at these extrema, which stress only one
component of the system. Instead, an efficient
system will use a balanced approach, intended
to utilize all components of the system equally.
This means using impostors to represent small,
relatively flat portions of the scene geometry;
and changing the impostor decomposition based
on the viewpoint to keep the screen-space size of
each impostor reasonable.

3 Impostors

An image impostor is a 2D standin for real 3D ge-
ometry. The technique itself predates even com-
puter graphics.

The painting style trompe l’oeil (to fool the
eye) is the technique of using 2D shading to cre-
ate the appearance of a 3D object, as shown in
Figure 4. Examples of this technique date back
to Greek and Roman times.

In theater backdrops are huge, painted pieces
of fabric hung behind the stage. Backdrops are
used to simulate large spaces (for example, out-
door scenes) or complicated sets (for example,
an ornate building interior) while staying within
space, cost, and construction time constraints.
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Method d a Limiting factor
Screen Shipping Large Large Network (low R: no reuse)
Point-Based Small Small Triangle Rate (low a: tiny triangles)
Parallel-Plane Small Large Fill Rate (high D: overdraw)

Table 3. Various extreme cases for the impostors method, for various impostor depths d and areas a, and their limitations.

Figure 4. A painting in the trompe l’oeil style by William
Michael Harnett, 1848-1892.

Matte paintings have served the same purpose
in films for over a hundred years.

Trompe l’oeil, backdrops, and matte paint-
ings all share the disadvantage that the de-
picted scene does not change when the viewpoint
changes—that is, these paintings display no par-
allax. This makes them most effective from far
away, where parallax is less noticeable. In addi-
tion, in the theater, viewers do not move; while
in films, the viewpoint motion is carefully con-
trolled.

Parallax is still an important consideration for
impostors in computer graphics. The main tech-
niques we use for achieving parallax include us-
ing multiple overlapping impostors at different
depths, and adaptively re-rendering the impos-
tors as the viewpoint changes.

3.1 Prior Work: Impostors

Environment maps [BN76] or skyboxes are
a backdrop-style technique used in computer
graphics. These precomputed background im-
ages normally map a view direction to a color.
Like physical backdrops, they display no paral-
lax; the image does not depend on the viewer
location. Many virtual environments use some
variation of this technique to display “far away”
geometry like the sky and distant mountains.

Billboards are precomputed, alpha-blended 2D
textures that always drawn facing the viewer.
For example, a classic method for rendering trees
was to precompute one large billboard with a
tree image, then face the tree billboard towards
the viewer.

Sprites, like billboards, are precomputed and
always drawn facing the viewer, but there can
be a separate image for a small set of differ-
ent viewpoints. For example, the monsters in
Id Software’s Doom were sprites with up to
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eight viewpoints distributed around a horizon-
tal circle, along with several animation frames.
The distinction between a sprite and billboard is
fuzzy; sometimes “sprite” merely means a bill-
board rendered with less sophisticated antialias-
ing or alpha blending.

The term impostor originates in a paper by
Maciel and Shirley [MS95], which defines an
impostor as anything that replaces actual ge-
ometry. They statically precomputed texture-
mapped polygon impostors for fixed pieces of ge-
ometry from fixed viewpoints.

Shade et al. [SLS+96] build impostor im-
ages at runtime from a hierarchical scene graph.
Shade allows large subtrees of the scene graph
to be replaced by impostors, and shows a system
that scales to very large databases. Like Shade,
we also build impostors on the fly; the main dif-
ference is we render the impostors on a parallel
machine, and with high quality.

Schaufler et al. [SS96] also describe a dynam-
ically generated impostors system, and has de-
tailed performance analysis regarding the impos-
tor update rate and the use of out-of-date impos-
tors. Schaufler also did not consider parallel or
antialiased rendering.

Aliaga [Ali98] describes a fully automated
portal-based rendering system based on impos-
tors, and presents a technique for warping the
surrounding geometry to match an impostor tex-
ture.

The impostors described above do not in-
clude per-pixel depth information—these impos-
tors are 2D planar quadrilaterals located in 3D
space. Chen and Williams [CW93] gave a good
early account of the possibilities for and prob-
lems with fully 3D image-based rendering, in-
cluding the possibilities of warping and resam-
pling images based on per-pixel depth. A sin-
gle impostor texture can survive dramatic view-
point change if the texture is warped according
to depth, but this requires an expensive per-pixel
texture resampling and must deal with the holes
caused by occluded regions in the original tex-
ture becoming visible. In our implementation,
other than regular 3D planar projection we per-
form no impostor warping—instead, as the view-

point shifts, the impostor textures are regener-
ated. Nothing prevents the parallel impostors
technique from being used with these more so-
phisticated impostors, however.

Sillion et al. [SDB97] describe an impostor-
based rendering system that overlays the impos-
tor image on a coarse mesh representing the ge-
ometry. This approach has a higher impostor
reuse rate than simple flat impostors.

Schaufler [Sch98] described Layered Impos-
tors, a multi-pass rendering system which stores
a per-pixel depth along with the impostor tex-
ture. By storing the depth in the alpha buffer,
the geometry at a single layer of the impostor can
be extracted using the alpha test. Schaufler then
renders the all the impostor’s layers from back to
front. This approach can survive dramatic cam-
era motion, but is limited by the overdraw caused
by the many texture passes each layer.

Shade et al. [SGHS98] describe Layered Depth
Images, an impostor-like image-based technique
that includes several depths at each pixel. Shade
gives a careful analysis of methods for resampling
images with depth, including hole filling.

Decoret et al. [DSSD99] describe multi-
meshed impostors, a system for constructing a
set of meshed impostors that accurately capture
parallax for complex urban geometry. They also
include a discussion of impostor update prioriti-
zation; but in the end prioritize simply based on
screen-space error.

Torborg et al. describe the Talisman [TK96]
system, a tile-based hardware 2D image com-
positing system that approximates 3D warps
with local 2D affine tile transforms. Torborg ex-
plicitly makes the argument that conventional Z-
buffer rendering can only provide transparency,
antialiasing, and anisotropic depth filtering at
enormous cost; but image-based systems can
provide these features cheaply. We use alpha-
blended impostors to achieve many of the ben-
efits of the Talisman system on conventional
graphics hardware.

Mark Harris’ cloud rendering work [Har02]
caches the expensive rendering of true 3D clouds
with simpler 2D impostors to achieve excellent
rendering performance. Like our work, he amor-
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tizes out the cost of an expensive, accurate ren-
dering by reusing impostor images.

3.2 Objections

Impostors, like any technique, has its drawbacks.
Low reuse. If the cached images have a low

probability of reuse (low view coherence), it may
be faster to skip the cache and simply draw
the object onscreen directly. We can mitigate
this disadvantage by using a hybrid rendering
algorithm that normally draws impostors, but
switches to the usual polygon-based rendering
for objects that show low view coherence, such
as very nearby objects.

Overhead for simple objects. For simple
models, the cost of drawing the object and the
cost of drawing an impostor of the object can be
nearly equal, so the image cache provides little
benefit. However, larger models are always de-
sired, so in practice an image cache should often
help.

Changing objects. If the model changes
dramatically, the cache must be invalidated. For
largely static scenes, like natural environments
or cities, this is rare; but for time-varying scien-
tific datasets it is the norm. Frequently-changing
geometry may have to bypass the impostor ren-
dering system and be drawn directly on the
client.

3.2.1 Missing Z

The biggest difference between the simple im-
postor technique and the usual graphics pipeline
is the lack of per-pixel impostor depth informa-
tion. There are a number of compelling reasons
to omit depth information. First, Z-buffer ren-
dering is incompatible with transparency, and to
allow antialiasing, the impostors we use are par-
tially transparent at the object boundaries. Sec-
ond, sending 24 bits of depth with each impostor
pixel would double the uncompressed size of the
impostor, which could halve the rate at which
impostors can be sent across the network. Third,
when performing splat-based particle rendering,
a unique depth value per pixel may be difficult to
compute or even define. Finally, graphics cards

only recently gained the ability to adjust a pixel
fragment’s depth value, and many cards still lack
this ability, so an impostor depth value may not
even be usable on the client.

There are also several inherent limitations to
the usual hardware Z-buffer depth algorithm.
The Z-buffer consumes memory bandwidth dur-
ing rasterization approximately equal to that
consumed by framebuffer writes. The Z-buffer
is not useful when combining partially transpar-
ent objects, which must instead be drawn in
strict depth order. The pass-fail nature of the
Z-buffer depth test prevents us from antialiasing
the edges of polygons. Finally, the finite pre-
cision of the depth buffer leads to quantization
errors (z-buffer fighting) for scenes with a large
range of depths, such as scenes consisting of both
nearby foliage and far away mountains.

All these disadvantages of the Z buffer
lead us to instead use the well known per-
object painter’s algorithm. We traverse the
scene’s impostors in back-to-front order, alpha-
compositing impostors as we go. This allows us
to avoid the expense of computing, sending, and
compositing per-pixel depths; allows us to use
transparency and antialiasing to improve the ap-
pearance of our impostors; and avoids flashing Z-
buffer roundoff errors. The method we use to tra-
verse our scene database in Z order is described
in Section 5.2.

3.3 Planned Work

Though impostors form the theoretical and prac-
tical basis of our technique, the basic technology
is well understood, so only a small amount of
work is needed to improve the performance and
appearance of our impostors.

Impostor Update. The simple parallax-
based impostor update equations of Section 2.2
cannot be used for arbitrary combinations of
camera and object motion. Instead, we will de-
termine if an update is required by examining a
set of “key points”, for which we will explicitly
compute and compare the screen projection of
the actual 3D location with the screen projec-
tion of the 2D impostor data. Initially, we will
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use the eight corners of the bounding box as key
points. Impostors may also need to be updated
because of intrinsic change, such as object defor-
mation.

Spatial discontinuity hiding. The bound-
aries between impostors can cause visual arti-
facts like seams, holes, and other artificial dis-
continuities. These boundaries can be handled
by blending, which replaces discontinuities with
blurring; by keeping objects up-to-date to sub-
pixel accuracy so the discontinuities are never
visible; or by carefully shifting adjacent objects
to parallax-match along each seam, like Aliaga
[Ali98] . Because the eye is insensitive to large,
low-frequency geometric errors, judiciously cho-
sen image planes may be able to conceal a great
deal of error.

Temporal discontinuity hiding. When we
get a new impostor image, using it onscreen im-
mediately can lead to a jarring visual “pop” as
the new image replaces the old; because hu-
man vision is quite sensitive to sudden temporal
change. Classic solutions to this problem soften
the transition using time or position dependent
crossfades. An advanced technique would be to
delay the update until some occluder crosses in
front of the object, as the visual system is quite
insensitive to this kind of obscured change.

4 Parallel Rendering

The method we propose performs impostor ren-
dering on a parallel machine. This section sum-
marizes the extensive prior work on parallel ren-
dering, describes the proposed parallel rendering
architecture, and describes planned work in par-
allel rendering.

4.1 Prior Work: Parallel

There is an immense amount of prior work in es-
sentially offline parallel rendering, including par-
allel raytracers [Sto98]; shear-warp and raycast-
ing volume rendering; and diffuse, specular, and
large-model radiosity. Our work is different in
that we attempt to provide full-framerate inter-
active speed; not just a high-quality rendering.

Molnar et al. [MCEF94] provide a good tax-
onomy for possible methods to parallelize the
usual feed-forward graphics pipeline exemplified
by OpenGL. The main differentiating factor is
the stage at which graphics data is sent across
processors. Sort-first, or screen-space subdivi-
sion, means the geometric primitives are sent
across processors before rasterization, and a ras-
terizer is only responsible for a small piece of
the final output image. Sort-last, or object-
space subdivision means primitives are rendered
locally, and the rasterized products are then as-
sembled across the network and composited.

UNC’s 1990’s PixelFlow machine [MEP92]
is a characteristic sort-last architecture. Pix-
elFlow consisted of an array of custom SIMD
chips, each of which renders a set of primitives
into a local framebuffer. The framebuffer out-
puts are then composited together via a high-
performance hardware compositing network.

Recent work on the Chromium [HHN+02]
architecture provides a flexible, high-
performance parallel rendering system for
clusters. Chromium provides a call-compatible
OpenGL replacement library and an assortment
of backend processing implementations. In
the typical sort-first usage, each processor of a
parallel application uses the library to describe
geometry, which is hashed into screen-space
buckets. The geometry for each region of the
screen is sent off and rendered on a separate
rendering pipeline, which typically uses a real
OpenGL implementation on a set of rendering
nodes. The open-source implementation sup-
ports a number of other possible configurations,
including sort-last.

Our parallel impostors technique is clearly a
sort-last technique, because objects are rendered
into impostors independently before being sent
across the network.

We could in theory similarly implement our
parallel impostors technique using ordinary
OpenGL calls to describe the geometry. How-
ever, our library would then have to reconstruct
object boundaries from the stream of geome-
try data in order to construct impostors, which
would be difficult and unlikely to produce a good
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quality partitioning. In addition, the applica-
tion would have to describe all the geometry of a
scene, including that for impostors which do not
need to be re-rendered.

Ward et al. describe the Holodeck Ray Cache
[WS99], a lightfield filled at runtime with rays
rendered by a parallel machine. Ward uses a
master-slave ray distribution approach, and as-
sembles the rays at the client. It is difficult to
reconstruct an artifact-free image from an arbi-
trary set of rays, so achieving good image quality
with this approach is challenging.

Mark [Mar99] showed a parallel rendering sys-
tem where the parallel server provided a low-
framerate stream of images plus depth, and the
client used an image-based warping technique to
interpolate a higher-framerate display. Because
the client does not have true geometry infor-
mation, this approach must somehow deal with
holes in the generated images.

Wald et al. describe a parallel raytracer
[WSB01] capable of displaying 50 million poly-
gon models at interactive rates. This is a classic
sort-last architecture based on screen shipping.
They get good results using a screen-tile-based
central work queue for parallel load balancing.
Like any screen-shipping approach, their perfor-
mance is limited by the network bandwidth to
the display client.

4.2 Proposed Architecture

The client, a regular OpenGL program, will con-
nect to the parallel server using our TCP/IP-
based protocol CCS, as described in Sec-
tion 4.3.2. The server is a parallel machine. As
the client’s viewpoint changes, normally every
frame, the client sends the latest viewpoint to
the parallel server.

The parallel server will receive viewpoint up-
dates, render new impostors if necessary, and
send impostor images back to the client. On re-
ceiving a new viewpoint, the server will broad-
cast the viewpoint to the parallel objects that
represent each piece of geometry. If the previ-
ously rendered impostor for that geometry is no
longer adequate, the geometry object enqueues

itself to be redrawn. Because rendering is sepa-
rate from the redraw decision, we can prioritize
the rendering process. As rendering generates
new impostor texture images, the textures are
batched up and sent off to the client.

The client receives updated impostor images
from the network, unpacks them, and inserts
them into the impostor cache. For display
the client traverses the scene database, making
OpenGL calls to render the cached impostors in
back-to-front order. Of course, some impostors
will not be visible in some frames, and will be
culled during the traversal.

When the viewpoint changes, an impostor tex-
ture will only be updated once the request has
been sent to the parallel machine, the parallel
machine has rendered a new impostor, and the
impostor has been shipped back to the client.
Delaying the display for this entire cycle would
cause dropped frames whenever any one of these
steps is delayed due to, for example, network in-
terference. Thus in our system the display is
handled by a separate client thread, which is
decoupled from the network impostor updates.
The display thread always renders the currently
available impostors, regardless of whether a bet-
ter impostor is on the way. Network input and
output are both handled by separate threads on
the client, as shown in Figure 5. This loosely syn-
chronized architecture should be able to perform
well even in the presence of significant network
performance variation.

4.3 Parallel Infrastructure

We will build the parallel rendering system on
top of our existing robust, high-performance gen-
eral purpose parallel infrastructure Charm++
[KK96]. In particular, we will use our existing
parallel work migration layer, the Charm++ Ar-
ray Manager; our client/server interface CCS;
and our C++ introspection system, the PUP
framework.

4.3.1 Charm++ Array Manager

The Charm++ Array Manager[LK03] allows
parallel objects called array elements to be cre-
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Figure 5. Architecture of client, showing threads that handle various tasks.

ated, destroyed, moved between processors of the
parallel machine, send and receive messages, and
participate in broadcasts and reductions. Each
piece of geometry to be rendered as an impostor
will be represented as an array element parallel
object.

Array element broadcasts will be used to dis-
tribute the latest user viewpoint. Array elements
will send each other messages to coordinate light-
ing, rendering, impostor merging, and splitting
tasks.

4.3.2 Converse Client/Server

The Converse Client/Server (CCS) protocol
[JLK04] is a simple protocol based on TCP/IP.
CCS runs portably on all UNIX machines with
sockets as well as Windows machines, and in-
cludes authentication. CCS allows Converse
(and hence Charm++) programs to act as par-
allel servers, responding to requests from the net-
work. The server side of this interface is built
into every Charm++ program, and the client
side is provided as a library for C and Java.

A CCS client, in this case the visualizer client,
connects to the server via a TCP connection and
sends it a request, which consists of a string han-
dler name and a block of binary request data.
The Charm++ runtime uses the handler name
to look up and call the appropriate handler func-
tion from an extensible table. After the server
has processed the request, it responds with a

block of binary response data. This simple re-
quest/response protocol allows information to be
injected into and extracted from a running par-
allel program.

Because the client opens the TCP connection
for a CCS request, CCS can be used by clients
behind firewalls or NAT routers. When CCS
is running over the unsecured internet, it can
be run in a secure authentication mode[Par04],
which uses a SHA-1 hash of the request, a nonce,
and a shared secret key for authentication. Au-
thentication prevents arbitrary users from inject-
ing messages, but because of export regulations
we do not provide network encryption.

4.3.3 PUP Framework

CCS provides a byte stream between client and
server; but for object-level communication we
use the existing PUP framework [JLK04], a
general-purpose method for manipulating the
contents of C++ objects. The PUP framework is
also used to migrate objects between processors
on the parallel machine, and perform I/O.

Charm++ originally required users to write
explicit data copying pack and unpack routines
for each object, as well as a size routine to deter-
mine the outgoing message size before packing.
The motivation for PUP is that the routines used
to compute the object size, pack an object into
a message, and unpack an object from a mes-
sage all must match up exactly. Everything that
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packed must be unpacked, and vice versa. Writ-
ing three interrelated routines for every object is
tedious, error-prone, and contributes to the bur-
den of parallel programming.

In the PUP framework, sizing, packing, and
unpacking are all controlled by a single user-
written subroutine called a pup routine. The pup
routine simply calls a virtual method on each of
the object’s fields, which are then sized, packed
or unpacked as appropriate. The PUP frame-
work uses C++ operator overloading to elegantly
express this object-field recursion.

The PUP interface used by CCS translates
messages to network byte order during the pack-
ing process, and translates back to native byte
order during unpacking. This allows clients and
servers with different machine architectures to
interoperate, without any additional effort. A
different implementation of the same interface
reads and writes objects to binary or ASCII disk
files, which is used for object I/O.

Finally, the PUP framework provides a class
registration mechanism to remotely instantiate
subclasses when the caller only knows about the
superclass. This is used to instantiate the display
objects that hold impostors generated by remote
parallel objects.

4.4 Planned Work

We have already created most of the parallel in-
frastructure that will be needed, but achieving
good parallel utilization and load balance will
require additional research.

4.4.1 Geometry Decomposition

The hardware performance model Equation 1
shows that the graphics card’s delivered fill rate
drops substantially for small triangles. But the
impostor parallax update rate Equation 4 shows
that the reuse rate is low for nearby large, thick
impostors. For high performance, we must stay
between these two extremes—distant geometry
should be aggregated into large impostors to im-
prove the fill rate; while nearby geometry should
be decomposed into small impostors to improve
the impostor reuse rate.

In our system, the geometry for each impos-
tor will be represented by exactly one parallel
array element. Thus as the camera moves, as
we change the set of impostors, we must change
the set of parallel objects that represent those
impostors. While a conventional parallel system
such as MPI provides little support for this, the
Charm++ Array Manager [LK03] directly sup-
ports the creation and deletion of parallel ob-
jects. We will hence create and destroy array
elements as we coalesce and split the geometry
they represent. Our method for actually split-
ting and merging the geometry is described in
Section 5.4.

4.4.2 Network Compression

As the primary bottleneck for performance may
be the link between client and server, some
amount of data compression may be benefi-
cial. We will analyze the bottlenecks and com-
pare the performance of uncompressed, run-
length encoded, entropy encoded (gzip), and
lossy frequency-domain encoded (JPEG) images.

4.4.3 Lighting

Rendering impostors is completely parallel, but
certain operations such as lighting, described in
Section 6.4, will require different pieces of ge-
ometry to communicate. For example, all the
geometry should share a single lighting map.
To implement this in parallel, we will distribute
the lightmap into tiles stored by a dedicated
set of array elements. During lighting, we will
merge the lightmap contributions from different
pieces of geometry. During rendering, each piece
of geometry will access its own portion of the
lightmap. Because lightmap access has excellent
spatial and temporal locality, it should be possi-
ble to implement this scheme efficiently.

4.4.4 Parallel Prioritization

A critical task for the parallel renderer will be al-
locating rendering cycles—deciding which pieces
of geometry to draw, from which viewpoints, and
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at what resolution. Consider that most impos-
tors in the world are either behind the viewer, ob-
scured by other geometry, or too far away to be
seen; so with an imperfect prioritization scheme
we could waste all our rendering cycles drawing
irrelevant geometry.

We will design and quantitatively evaluate the
performance of quality rendering prioritization
systems. The evaluation will be performed by
sending the parallel machine each camera posi-
tion of a stored camera path, and computing the
frame-by-frame RMS error of the resulting ren-
derings, compared with a perfect set of render-
ings computed offline.

We will examine prioritization systems involv-
ing combinations of these factors:

� Geometry’s screen area in pixels, not count-
ing clipped or occluded areas.

� Current impostor’s projection error, in
screen pixels.

� Perceptual importance, including contrast
and visible detail.

� Estimated rendering time required, to en-
courage short jobs to go first.

� Request age in frames, to prevent starva-
tion.

For example, one promising approach is to set
the priority as the product of the screen area,
error, and importance divided by the estimated
rendering time. This attempts to maximize the
per-pixel perceived image quality per second.

We will also investigate the use of estimated
future values for these prioritization factors.
This could allow speculative “prefetching” work,
at least when the camera path is reasonably
predictable. In particular, we will evaluate the
use of impostors projected, not from the current
camera position, but from the estimated camera
position halfway though the imposter’s lifetime.
With perfect camera prediction, this pre-warping
technique could double the impostor reuse rate.

One complicating factor in prioritization is
the fact that most of the world’s geometry is

offscreen or occluded—for example, all the ge-
ometry behind the viewer or hidden by nearby
buildings. This means we must be prepared to
quickly stop rendering geometry that becomes
hidden. More difficult is the fact that in an inter-
active setting, geometry can become visible quite
quickly, for example when panning the camera
or passing beyond the corner of a building. For
these situations, predicting and rendering cur-
rently invisible geometry may be very important.

We anticipate accurate prioritization will be
difficult to obtain, but very important for overall
system efficiency.

4.4.5 Parallel Load Balancing

The existing Charm++ automatic load balanc-
ing system [Bru00] will monitor the computa-
tional load on each processor and the load gen-
erated by each array element. If significant load
imbalance is detected, the system will migrate
array elements between processors to improve
the load balance.

We expect this history-based load balancing
method will appear to provide good load bal-
ance, in the sense that all processors will re-
main busy most of the time. However, for good
delivered performance, all processors must not
only be busy, but must be busy doing important,
high-priority work. We will use our extensive in-
frastructure for parallel prioritization to perform
this prioritized load balancing [KRSS93].

In particular, we will use the impostor up-
date rate Equation 4 to estimate the time un-
til the next required update based on the cur-
rent amount of error, and the priorities described
above to evaluate the priority of that update. If
the expected future prioritized load distribution
is uneven, we will migrate array elements to re-
solve the imbalance.

Note that because much of our geometry
is procedurally generated, the individual array
elements representing each piece of geometry
should require only a small amount of memory.
Thus migrating these array elements should be
very efficient.
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5 Large Model

The motivating example and performance
benchmark for our method is an extremely large,
detailed model of the campus of the University
of Illinois at Urbana-Champaign. This is a use-
ful environment to analyze, because it includes
a variety of natural and artificial objects, so our
impostor technique can be examined in a real,
unbiased environment. An immense quantity of
machine-readable data is already available for
the campus. Ground truth data is readily avail-
able. Finally, a large virtual environment which
includes substantial quantities of distant geom-
etry fits well with the parallel impostors tech-
nique, due to the high reuse of distant impostors
shown in Table 2.

We will focus on building and viewing the cam-
pus model from outside the buildings and at
ground level. The basic representation for the
model is an elevation image, or height map dec-
orated with trees, buildings, and other geome-
try. Because the height map, trees, and build-
ings are all represented recursively, the overall
scene graph we describe is a recursive tree.

5.1 Height Maps

The height map representation we use is derived
from Lindstrom and Pascucci’s terrain simplifi-
cation method [LP02]. This method displays the
terrain by recursively expanding a spatial tree,
terminating the expansion when the screen space
error drops below a threshold, as shown in Fig-
ure 6. One advantage of this recursive expansion
is that we can perform very efficient view culling
by simply not expanding those subtrees that lie
completely offscreen.

In this sense, the mesh representation is a
perfectly ordinary expand-on-demand quadtree.
The well-known problem with quadtrees, how-
ever, is that when a quad is refined but the ad-
jacent quad is not refined, a crack appears be-
tween the two quads. Lindstrom and Pascucci’s
contribution is a preprocessing bottom-up error
propagation step that allows the runtime top-
down traversal to respect refinement boundaries,
so cracks never appear.

Figure 7. Mesh for terrain rendering of a cone sticking up
out of a plane. Note how the quads are split around the axis
of the cone, conforming to the surface curvature.

The method we use differs slightly from Lind-
strom and Pascucci’s in that we explicitly treat
the mesh as a set of quadrilaterals (quads), which
allows us to decompose the quads into triangles
along either diagonal, rather than decomposing
them in a fixed way as in Lindstrom and Pas-
cucci. We always split the quads along the axis
that better represents the geometry, as shown in
Figure 7.

Rather than representing the entire mesh as a
strict hierarchy, we divide the preprocessed mesh
up into independent rectangular tiles. This elim-
inates the top levels of the hierarchy, and allows
the tiles to be paged in across the network.

5.2 Depth Traversal

As described in Section 3.2.1, we will not use
the Z-buffer to resolve depth. Instead, we use
the simple “render from back to front” painter’s
algorithm. We have developed a novel technique
for traversing a height field in strict depth order
from an arbitrary viewpoint.

As we recursively traverse the terrain
quadtree, we can choose the order in which
to traverse the child nodes and hence expand
their geometry. By processing child nodes in
back-to-front order, we extract the geometry
in back-to-front order. Where this becomes
difficult is when the camera is within the scene,
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Figure 6. Mesh for terrain renderings with different screen-space error criteria: 16 pixels, 4 pixels, 1 pixel, 0 pixels.

Figure 8. Extreme wideangle view looking down from 1.8km
above Denali National Park in Alaska. This image is cor-
rectly rendered in back-to-front (outside to inside) order,
which demonstrates the correctness of our painter’s algo-
rithm depth sort.

as in Figure 8. In this case, the child processing
order must be determined separately at each
node. Figure 9 is colored by the number of
the first processed child; note how the order
changes as the camera view vector crosses the X
and Y axes of the terrain, which run along the
diagonals of the image.

5.3 Data Sources

An immense amount of data is available for the
campus.

AutoCAD Maps. Like many campus op-
erations and maintenance departments, UIUC
maintains a number of AutoCAD files describ-
ing different aspects of the campus. The utilities
map, for example, describes vector contours for
every building, street, sidewalk, body of water,

Figure 9. The same view as Figure 8, showing the order in
which the terrain is traversed. The order starts from the left
in the purple region, from the top in the blue region, from
the right in the red region, and from below in the green
region.

and grassy area on campus, as well as the loca-
tion of every tree, bush, streetlight, power pole,
manhole and sewer drain on campus. Building
maps describe, for each floor, the locations of all
walls, doors, stairs, and windows.

We use the OpenDWG [All04] library to read
the AutoCAD, and custom tools to bring the
drawings into the UTM map projection from the
Illinois State Coordinate System (ILCS). An ex-
ample of a section of the utilities map is shown
in Figure 10.

Aerial Photos. On April 7, 1999, the univer-
sity commissioned an aerial survey of the cam-
pus, producing a series of 9 inch prints which
were scanned at 600dpi into 5000x5000 pixel full
color digital images. There are two passes, a
500 (feet of ground per inch of film) scale with
a ground resolution of approximately 24cm per
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Figure 10. Four blocks from the 2004 campus utilities map
(top) and 1999 aerial photo (middle), and 1998 USGS or-
thophoto (bottom) near Mattews and Springfield in Urbana,
Illinois. Note how the Siebel Center in the top right, con-
structed in 2003, does not appear in the lower two photos.

pixel and a 250 scale with a ground resolution of
approximately 12cm per pixel, as shown in Fig-
ure 10.

USGS Maps. The United States Geological
Survey publishes a variety of data for the entire
United States. We will use the USGS 1:24K scale
digital elevation model (DEM) data as our source
for overall terrain features. Figure 11 shows the
elevation map.

Road Signs. The United States Federal
Highway Administration publishes a specifica-
tion for road signs, the Manual for Uniform Traf-
fic Control Devices [oTFHA04], which includes
vector images of every official road sign. We
have extracted these roadsigns using our cus-
tom Postscript interpreter, and can easily render
them as antialiased images of any size. A partial
index is shown in Figure 12.

The road signs in the model will be dynami-
cally generated from these vector versions.

Ground Photos. Finally, we have a series of
panoramic photos taken from ground level using
a handheld digital camera. The digital camera
photos are in EXIF format, for which we have
developed a geometric and radiometric calibra-
tion profile. The images can thus be processed
into distortion-free, linear-light images.

We expect to use the ground photos to cali-
brate, verify, and fill in holes in the aerial photos.

5.4 Planned Work

A substantial amount of work remains on the
campus model.

Integration. The data sources in the previ-
ous section must be registered into a single co-
ordinate system. We we will use the UTM map
projection, because the USGS data is already in
this coordinate system. UTM provides a regular
2D coordinate plane measured in meters.

Culling. Our height map traversal algorithm
does not perform occlusion culling, which could
avoid drawing scenery that is obscured by build-
ings. We will extend our height map to perform
occlusion culling in substantially the same man-
ner as view culling: during the preprocess we will
compute and propagate 2D angular view infor-
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Figure 11. 4.7 square kilometers from the USGS 10m ele-
vation map, with the USGS topo map overlaid. The region
displayed stretches north-south from University to Windsor;
and from 1st Street in Champaign to Lincoln Avenue in Ur-
bana.

Figure 12. A partial index of public domain vector-graphics
road sign images.
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mation up the bounding hierarchy, then during
traversal we will perform early exit testing to cull
out obscured geometry.

Splitting and Merging. As the camera
moves, we will split and merge the geometry rep-
resented by each impostor. Splitting a set of ge-
ometry means replacing the geometry by its chil-
dren in the scene graph. For example, splitting
might replace a single tree by separate impos-
tors for its trunk and branches; replace small tree
branches by separate impostors for its twigs and
leaves; replace a building by separate impostors
for each wall; or replace a small wall section by
individual bricks. Merging is simply the inverse
process—a set of children are replaced by their
common parent. While splitting and merging
could in theory occur between arbitrary geome-
try, we will only use decompositions that respect
the scene graph.

Interiors. Extensive data is also available for
building interiors; but because our focus is on
exteriors, we will only use this data to track the
locations of exterior floors, doors, and windows,
and hence decorate exterior walls. Building in-
teriors would be most naturally supported by a
separate portal-based system, which would com-
plement the terrain-based system we use for ex-
teriors.

Photo Analysis. The campus maps pro-
vide an excellent classification of the university
grounds into grass, sidewalk, roads, parking lots,
and buildings. However, consider the roads—the
maps describe the boundaries of the roadway,
but give no details on the composition or color
of the road. We plan to use the campus aerial
photos to extract this additional appearance in-
formation for all parts of the campus.

It is easy to overlay a photograph as a tex-
ture on existing geometry, but this technique is
limited by the photograph’s resolution and also
mixes together the desired and the unwanted ge-
ometry (such as cars on the roadway) and light-
ing (such as shadows and sky light). For exam-
ple, the photographs in Figure 10 are incorrect
where new buildings have been constructed since
the photos were taken.

Instead, we plan to use the existing geometry

to estimate and divide out the sky and direct
sun lighting, then use the photographs to ini-
tialize a procedurally generated albedo texture
model. Projecting the image onto a statistical
texture model will essentially filter out any errors
in albedo estimation or unwanted geometry. We
expect a very simple stationary texture model
will suffice to represent the large variations in
the colors of grass and pavement, with a multi-
plicative detail texture to provide the structured
small-scale detail.

6 Rendering

Rendering geometry for an impostor is quite
similar to rendering for display. Because an
impostor is simply a raster image of the ob-
ject, virtually any technique can be used to ren-
der impostors. For example, impostors could
be rendered using the classic feed-forward z-
buffer algorithm on graphics hardware, a scan-
line algorithm in software, splat-based rendering,
image-based techniques, distribution raytracing,
or even physically-based radiation transport.

In this section we will describe our approach
for rendering the campus model. The aim is
to minimize modeling effort and maximize im-
age quality, given the target rendering rate of
around a million pixels per second. As such,
there may be sufficient compute time available
to pursue high-quality rendering techniques such
as distribution ray tracing, quality splatting, or
cone tracing.

6.1 Antialiasing

Conventional interactive rendering performs
simple point sampling of object boundaries,
which results in objectionable stair-step aliasing
along object boundaries. Texture maps take ad-
vantage of the client graphics hardware’s builtin
texture antialiasing. By preparing our impostors
with antialiased edges, even object boundaries
are antialiased at very low cost. We will pre-
pare impostors with antialiased edges using our
analytic trapezoid-based rasterization system.

Because an impostor is rendered for a fixed
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display orientation, another promising technique
is to include anisotropic texturing while prepar-
ing the impostor. Impostor display could then
use the hardware’s simple and fast interpola-
tion strategy, but because the impostor is al-
ready anisotropically filtered, the display quality
should approach that of true anisotropic textur-
ing.

6.2 Reflections

Reflection, including blurry reflection, can be
integrated into the impostor images just like
all other appearance quantities. However, be-
cause unlike diffuse emission, reflected images
can change drastically depending on the view-
point. Thus, for nearby geometry including re-
flections in the impostor would result in a very
short impostor lifetime.

Instead, we will normally compute reflections
on the client machine, using the usual environ-
ment map techniques commonly found on graph-
ics hardware. The environment map could be: a
fixed precomputed image; a new image rendered
by the client based on the current impostors; or
could even be rendered on and sent from the par-
allel server.

If reflections are rare, such as in outdoor
scenes, they could be rendered entirely on the
client using the full geometry of the reflective
object. If reflections are more common, or more
detail is required, the server could compute a
normal map image which the client would use to
compute per-pixel reflection.

6.3 Motion blur

Motion blur is an important effect for quickly-
moving objects. Motion blur is normally com-
puted by averaging together a set of samples
distributed in time along the interval between
frames. Rendering motion blur via this set of
samples is simple, but because the cost is thus
linear in the blur distance (e.g., a 16-pixel blur
requires 16 separate renderings), motion blur is
rarely performed in interactive rendering sys-
tems.

However, impostors provide two important im-
provements for motion blur. First, texture maps
can be redrawn again and again quite cheaply,
which decreases the cost of motion blur com-
puted using the usual algorithm. Second, un-
like polygons, impostors have the property that
a rendering of two impostors can be itself treated
as an impostor. This property is used by our
novel algorithm for efficiently computing motion
blur: fast exponentiation blur.

We define an operator T i that represents a
shift by i/n of the frame time. Conventional mo-
tion blur calculates the output blur image B as
the average of the input geometry G at each of
the shifts T i:

B =
∑n−1

i=0 T iG

n

But if the operator T has the “polynomial”
property, that T i = T i−jT j , then we can calcu-
late B more quickly by factorizing the product
as (for even n):

B =
(1 + Tn/2)

∑n/2−1
i=0 T iG

n

For example, if M is a rotation/translation/scale
2D image matrix that takes one frame to the
next, and we define T i = M i/n as simple ma-
trix exponentiation, then T has the polyno-
mial property, since T i−jT j = M (i−j)/nM j/n =
M i/nM−j/nM j/n = M i/n. Note that matrix ex-
ponentials, and hence fast exponentiation blur-
ring, can handle simple linear translation, but
also rotation, scaling, skew, and any combina-
tion thereof.

The factorization process corresponds to com-
puting a large blur (e.g., with n = 16) by
first computing a small blur image (e.g., with
n/2 = 8), call it S, then computing S +Tn/2S—
that is, adding a shifted version of the small blur
image back into itself. Note that this is exactly
the same repeated self-multiplication trick used
in the numerical fast exponentiation algorithm.

We can repeat this factorization process to cal-
culate the blur in just lg n steps (for n a power
of two):

B =

∏j=lg n−1
j=0 (1 + T 2j

)G
n
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Figure 13. A small central purple polygon, motion blurred
for a rotating zoom using fast exponentiation blurring.

This blur is initialized by first drawing the in-
put geometry once at the identity shift T 0. The
image is then repeatedly read back, shifted twice
as far as before, and added into itself. This can
all be implemented quite efficiently on the graph-
ics card using either render-to-texture or render
and copy-to-texture. Figure 13 shows a simple
polygon blurred using fast exponentiation blur-
ring on the graphics card.

In our parallel rendering system, we will per-
form motion blurring on the client machine. The
server could in theory also perform blurring, but
the blurring would then be delayed by the time
taken to ship the blurred images across the net-
work, which may be too limiting. Only a limited
degree of blurring may be affordable for slower
graphics cards, such as blurring only the nearby
impostors, or only computing an average blur for
the entire screen.

6.4 Lighting

Outdoor scenes are lit by the sun, but sky light
and indirect illumination play a very important
role in outdoor scenes. As shown in the middle
photo in Figure 14, without sky light, areas in
shadow appear unnaturally black. This section
describes techniques for representing both sun
and sky light.

In our prototype, all impostor lighting will be
computed on the parallel server, and hence in-

Figure 14. Campus illuminated by sky light (top), sun light
only (middle), and sun and sky light (bottom). The top and
bottom images are calibrated photographs acquired with a
digital camera; the sun-only image is computed from these
images by subtracting the sky light image from the sun and
sky light image.
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cluded in the impostors when shipped to the
client. Because the scene is largely static, we can
precompute the expensive portions of the light-
ing, such as the generation of the shadow and
sky-light maps.

6.4.1 Direct Lighting

Direct lighting, such as sunlight, is often ap-
proximated by point light sources, which cast
hard-edged shadows. But in reality an area light
source casts a soft shadow, with a fully black um-
bra surrounded by the partially bright penum-
bra.

There are three classes of techniques to com-
pute shadows in computer graphics. Raytracing
can trivially determine if a light source is visible
from a point and is extremely accurate. Shadow
volumes are a screen-space technique which ex-
trudes, rasterizes, and counts object silhouette
edges to determine which points are in shadow.
Finally, shadow maps rasterize the scene from
the light source’s point of view, and store the
depth to the first occluder. Broadly, raytracing
is generally quite slow, shadow volumes are slow
for objects with complicated silhouettes (such as
trees), and shadow maps display sampling and
resolution problems.

A good survey of existing soft shadow mod-
ifications to these techniques is presented by
Hasenfratz et al. [HLHS03]. We begin with the
realtime soft shadow-map technique of Kirsch
and Döllner [KD03], which can be computed
fully on the graphics hardware, but only repre-
sents the inner penumbra. We have extended
this technique to capture the outer penumbra,
which allows it to be physically correct for at
least some cases. We have also found a formula-
tion of this technique which is substantially free
from interpolation artifacts.

Our novel formulation stores two depths for
each light-source ray: c, the depth of the first
occluder (this can be approximated by the usual
shadow map depth); and p, the signed depth of
the beginning (“limit”) of the penumbra. The
sign of the penumbra limit p is chosen so it de-
creases away from the object. From light source

to the first occluder, the light source is fully vis-
ible; from first occluder to the beginning of the
penumbra, the light source is fully obscured; be-
yond the end of the penumbra, more and more
of the light source is visible.

Inside the penumbra, the fraction L of the
light source visible at a depth z from the light
source is simply:

L(z) = 0.5 + 0.5 ∗ c− p

c− z

It can be shown that this penumbra limit map
can exactly represent the shadow of a simple
half-infinite plane occluder illuminated by an in-
finitely distant light source. For arbitrary oc-
cluders or light sources, the shadow complexity
of a light-source ray can be arbitrarily large, so
the penumbra limit map is no longer exact, but
it provides a very fast yet reasonable approxima-
tion, as shown in Figure 15. The corresponding
penumbra limit maps are shown in Figure 16.

We currently generate the penumbra limit
map in software, which our unoptimized imple-
mentation takes under one second to compute
a 1024x1024 penumbra limit map. It should be
trivial to traverse the penumbra limit map in one
pass of the current generation of programmable
graphics hardware, though for computing impos-
tors on the parallel machine we may render them
in software.

The disadvantages of this technique are that,
like any shadow map, we must choose an appro-
priate resolution for the penumbra limit map.
Overlapping soft shadows are only approxi-
mated; and depending on how the shadows over-
lap the system may create or destroy radiant en-
ergy as the light propagates.

6.4.2 Indirect Lighting

We will approximate sky light and other indirect
illumination using a coarse uniform voxel light-
ing grid throughout the scene. This approach
calculates only the vertical direction of Greger’s
irradiance volume [GSHG98]. While Greger and
later work calculates the lighting based on a
cubemap or other irradiance samples, we pro-
pose a faster approximation.
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Figure 15. A scene with soft shadows rendered via the penumbra limit map technique. Light is cast by an extended light
source offscreen to the left, which has an angular size of three degrees. The light is occluded by a small polygon standing
on its tip (left) and a tree (right). Note how the polygon’s shadow gets softer as it travels. The shadow map resolution is
1024x1024.
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Figure 16. Portions of the actual penumbra map image.
Left is the original depth map, with the red channel showing
the closest geometry and the green channel showing the far-
thest, where darker values indicate farther depths from the
light. Right is the actual penumbra limit map—red is the
depth to the first portion of shadow, green is the depth to
the active occluder c, and blue is the signed penumbra limit
depth p.

To calculate the lighting grid, we first raster-
ize the geometry into a voxel grid. Each voxel
contains an isotropic approximation to the con-
tained geometry’s occlusion and emission, where
emission includes diffuse reflection as well as
source brightness terms. Our representation of
this isotropic occlusion and emission is simply
an RGBA alpha-weighted color: low alpha cor-
responds to small amounts of occlusion, high al-
pha to large amounts of occlusion, and RGB is
the emissive color.

This voxel grid could actually be rendered by
the usual volumetric rendering techniques; but
we will use a simple directional approach to com-
pute sky lighting. We will sweep through the oc-
clusion and emission voxel grid from top down:
higher voxels occlude sky light and cast emitted
light toward nearby lower voxels, as illustrated in
Figure 17. This diffusion-based approach has the
disadvantage that light spreads in all directions,
rather than traveling in straight lines like actual
light in a vacuum. However, radiant energy is
neither created nor destroyed during propaga-
tion; and the system is actually physically cor-
rect for a situation with an appropriate partici-
pating media.

The result is a voxel lighting grid giving a local
approximation of the illumination arriving from
above, including sky and indirect lighting. For
higher quality, one could add sweeps from other
directions to capture illumination from below

Figure 17. A cross section of the sky lighting computed by
our one-sweep approximation to global illumination. Blue
sky light diffuses down from the top and is blocked by several
black shapes, and a yellow sphere reflects light downwards.

and from the sides. The natural generalization of
this technique to many directions is the discrete-
angles sweep method for radiation transport de-
scribed by Plimpton et al. [PHBI00].

6.5 Trees/Foliage

Trees and other foliage will be procedurally gen-
erated using an Iterated Function System (IFS).
This will allow us to use our IFS bounding
method [LH03] to construct a tight bounding
volume for the procedurally generated geometry.
Trees will be rendered using a simple splat-based
renderer for the leaves, and antialiased line seg-
ments for the trunk and branches.

Each leaf is, when far away, rendered as a sin-
gle splat, with alpha scaled to the leaf’s area
coverage. When close up, the leaf is drawn as
an antialiased leaf texture map. Leaf colors are
pseudorandomly selected from a distribution of
leaf colors; with the pseudorandom seed value
set consistently for each leaf cluster.

To speed up rendering for the leaves, we only
actually expand the IFS maps for the high levels
of the tree; once we are close to the individual
leaves, we switch to a precomputed cluster of 3D
leaf locations. Using leaf clusters does not af-
fect the image, but reduces the number of matrix
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multiplies needed during display dramatically.
We perform the Z-sort for trees using a two-

pass radix sort. Leaf clusters and individual
branches are both sorted by their centroid, and
splatted into the impostor in back-to-front or-
der. An example of a tree rendered using these
techniques is shown in Figure 15.

For very nearby trees, we will switch from
using impostors to procedurally generating and
rendering the tree geometry on the client itself.
This will avoid the low reuse for impostors of
extremely close objects.

6.6 Buildings

The buildings on campus are predominantly
rectangular, so we will render each wall as a sep-
arate impostor. The buildings are also almost
all brick, so we will work to procedurally gener-
ate the appearance of brick. The wall impostors
can always be drawn aligned with the walls, so
even up close, individual bricks can be rendered
as simple aliased rectangles. Mortar lines can be
omitted for distant walls, and drawn in as an-
tialiased lines for nearby walls.

Very distant windows will be drawn in as sim-
ple recessed dark rectangles. Closer windows
will use texture combiners to alpha-composite
the wall image atop a static neighborhood envi-
ronment map. For very nearby windows, we will
dynamically generate the reflected image on the
client by drawing in a stenciled, reflected version
of the nearby geometry. In each case, we can
control the reflection intensity and add lit dust
by adjusting the transparency and opacity of the
wall impostor.

6.7 Sky

Our sky will be procedurally rendered, based
on a single-bounce analytical approximation to
Rayleigh and Mie scattering similar to Mus-
grave’s sky model [Mus93]. This should allow
us to compute the color of the sky for any time
of day, location, and atmospheric condition.

6.8 Other Geometry

The geometry we have described above such
as trees and buildings is procedurally generated,
where nothing is stored but the basic object
parameters, and the geometry of the object is
freshly synthesized at rendering time. Other ge-
ometry that is difficult to represent this way will
be rendered using simple textured polygons read
from a file using the usual feed-forward Z-buffer
rendering system. We will use this pregenerated
geometry to represent cars, lightpoles, and traffic
lights.

7 Conclusion

This paper contains a variety of work related to
impostor-based rendering. We now summarize
our contributions.

� We have designed a novel high-performance
rendering architecture, parallel impostors.
We have shown parallelism and impostors
can allow dramatically increased perfor-
mance and improved image quality.

� We have formulated a new performance
model for modern graphics hardware, de-
scribed in Section 2.1 and tested in detail
in Appendix A.2.

� We have described a novel impostor-based
method to compute motion blur, the fast
exponentiation blur of Section 6.3. This
method of blurring is asymptotically faster
than known approaches.

� We have described a novel method to ap-
proximate blurry shadows, the penumbra
limit map technique of Section 6.4.1.

We have presented parallel impostors, a gen-
eral technique that exploits view coherence to
decrease the latency and bandwidth required for
interactive 3D rendering. We have shown how
this technique enables us to utilize the rendering
power of large parallel machines. We have shown
how this technique can be used to extend the
state of the art in interactive rendering quality,
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by making fully antialiased rendering affordable.
Finally, we have demonstrated the technique is
applicable to very large outdoor environments.
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A Graphics Operations

This section describes the basic graphics hard-
ware features used in this work.

A.1 Hardware Operations

The parallel impostors technique requires only a
few, widely available hardware operations.

One critical feature is the ability to upload tex-
tures onto the graphics card once, then repeat-
edly render using that texture. We currently use
the OpenGL routine glBindTexture to create a
texture, and glTexImage2D to copy in the im-
age data. When replacing the impostor, we use
glDeleteTextures to free the texture.

To draw an impostor, we currently use glBind-
Texture to activate the impostor’s (previously
uploaded) texture, then glBegin/glEnd to draw
the impostor as a quadrilateral. We use four
calls to glTexCoord2f/glVertex3f to describe the
2d texture coordinates and 3d vertex coordinates
of the four corners of the impostor. The texture
coordinates always cover the entire impostor tex-
ture.

A.2 Hardware Performance

We analyzed the triangle rate and fill rate for
a variety of graphics hardware. In each of the
following sections, we present the fill rate and
triangle rate for drawing untextured single-color
opaque right triangles with various short side
lengths. The triangles are drawn using vertex
arrays and glDrawElements, although numbers
for glBegin/glVertex/glEnd are similar. Num-
bers are given for 66% vertex reuse (each triangle
has only one new vertex), which should be typ-
ical of triangle strips; the performance appears
similar for random-order triangles.

The detailed performance model is Equation 1,
as described in Section 2.1. For triangles with
sides less than about 10 pixels, all the graph-
ics hardware we examined is triangle-rate lim-
ited; and the fill rate is quite poor. For triangles
larger than about 100 pixels, all hardware is fill-
rate limited. For triangles of intermediate size,
triangle rate eventually trades off into fill rate.
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Figure 18. Fill rate for nVidia GeForce3/Athlon.
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Figure 19. Triangle rate for nVidia GeForce3/Athlon.

A.2.1 nVidia GeForce3/Athlon

Figure 18 and Figure 19 show actual perfor-
mance for a nVidia GeForce3 (ASUS 8200)
with an AMD Athlon 1.3GHz processor, running
Windows 2000 Professional. We compare actual
performance to the model α = 131.1 ns, β = 1.25
ns/pixel.

Drawing a plain color pixel takes 1.250
ns. Adding texturing increases the cost to
2.091 ns. Alpha blending and texturing
costs 2.616 ns. Depth and texturing costs
2.497 ns. Alpha, depth buffer, and textur-
ing costs 3.022 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 1.282 us + 43.749
ns/pixel.
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Figure 20. Fill rate for nVidia GeForce3/Pentium 4.
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Figure 21. Triangle rate for nVidia GeForce3/Pentium 4.

A.2.2 nVidia GeForce3/Pentium 4

Figure 20 and Figure 21 show actual perfor-
mance for a nVidia GeForce3 (ASUS 8200) with
Intel Pentium 4 1.8Ghz/RDRAM under Linux
2.4.20, nVidia driver version 53.36. We compare
actual performance to the model α = 131.6 ns,
β = 1.27 ns/pixel.

Drawing a plain color pixel takes 1.427
ns. Adding texturing increases the cost to
2.250 ns. Alpha blending and texturing
costs 2.812 ns. Depth and texturing costs
2.636 ns. Alpha, depth buffer, and textur-
ing costs 3.144 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 1.244 us + 15.588
ns/pixel.

29



 0

 100

 200

 300

 400

 500

 600

 700

 1  10  100

Fi
ll 

R
at

e 
(m

eg
ap

ix
el

s/
se

co
nd

)

Triangle Side Length (pixels)

Theoretical Speed
Measured Speed

Figure 22. Fill rate for ATI Mobility Radeon 9000.
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Figure 23. Triangle rate for ATI Mobility Radeon 9000.

A.2.3 ATI Mobility Radeon 9000

Figure 22 and Figure 23 show actual perfor-
mance for an ATI Mobility Radeon 9000 (R250
Lf rev 1) with Intel Pentium M 1.6Ghz running
Linux 2.4.25, ATI FireGL Linux kernel driver
February 2004. We compare actual performance
to the model α = 36.4 ns, β = 1.73 ns/pixel.

Drawing a plain color pixel takes 1.586
ns. Adding texturing increases the cost to
3.863 ns. Alpha blending and texturing
costs 6.108 ns. Depth and texturing costs
5.974 ns. Alpha, depth buffer, and textur-
ing costs 8.205 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 0.923 us + 12.838
ns/pixel.
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Figure 24. Fill rate for nVidia GeForce2 Ti.
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Figure 25. Triangle rate for nVidia GeForce2 Ti.

A.2.4 nVidia GeForce2 Ti

Figure 24 and Figure 25 show actual perfor-
mance for a nVidia GeForce2 Ti (NV15 rev 164)
with an AMD Athlon 1.25GHz running Linux
2.4.20, nVidia driver version 44.96. We compare
actual performance to the model α = 122.7 ns,
β = 1.32 ns/pixel.

Drawing a plain color pixel takes 1.542
ns. Adding texturing increases the cost to
2.668 ns. Alpha blending and texturing
costs 4.480 ns. Depth and texturing costs
3.708 ns. Alpha, depth buffer, and textur-
ing costs 5.499 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 1.528 us + 33.313
ns/pixel.
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Figure 26. Fill rate for nVidia GeForce4 MX 440.
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Figure 27. Triangle rate for nVidia GeForce4 MX 440.

A.2.5 nVidia GeForce4 MX 440

Figure 26 and Figure 27 show actual perfor-
mance for a nVidia GeForce4 MX 440 (NV18 rev
162) with a Pentium 4 3GHz/Hyperthreading
under Linux 2.4.22, with nVidia driver version
53.36. We compare actual performance to the
model α = 79.6 ns, β = 2.32 ns/pixel.

Drawing a plain color pixel takes 2.572
ns. Adding texturing increases the cost to
4.951 ns. Alpha blending and texturing
costs 6.888 ns. Depth and texturing costs
7.143 ns. Alpha, depth buffer, and textur-
ing costs 9.212 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 0.690 us + 10.165
ns/pixel.
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Figure 28. Fill rate for nVidia Quadro2 MXR.
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Figure 29. Triangle rate for nVidia Quadro2 MXR.

A.2.6 nVidia Quadro2 MXR

Figure 28 and Figure 29 show actual perfor-
mance for a nVidia Quadro2 MXR (NV11 rev
178) with Intel Pentium 4 1.8Ghz/RDRAM un-
der Linux 2.4.20, nVidia driver version 53.36.
We compare actual performance to the model
α = 120.0 ns, β = 3.20 ns/pixel.

Drawing a plain color pixel takes 3.240
ns. Adding texturing increases the cost to
5.303 ns. Alpha blending and texturing
costs 9.344 ns. Depth and texturing costs
7.644 ns. Alpha, depth buffer, and texturing
costs 12.106 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 1.206 us + 14.884
ns/pixel.
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Figure 30. Fill rate for Sun Creator-3D.
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Figure 31. Triangle rate for Sun Creator-3D.

A.2.7 Sun Creator-3D

Figure 30 and Figure 31 show actual perfor-
mance for a Sun Creator-3D graphics card in a
SunBlade 1000 running Solaris 8, Sun OpenGL
1.2.2 for Solaris. We compare actual perfor-
mance to the model α = 615.4 ns, β = 13.28
ns/pixel.

Drawing a plain color pixel takes 14.142
ns. Adding texturing increases the cost to
151.531 ns. Alpha blending and texturing costs
151.500 ns. Depth and texturing costs 151.536
ns. Alpha, depth buffer, and texturing costs
151.592 ns. Mipmapped texture upload (with
MIPMAP SGIS) costs not available.
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Figure 32. Fill rate for Mesa Software Rendering.
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Figure 33. Triangle rate for Mesa Software Rendering.

A.2.8 Mesa Software Rendering

Figure 32 and Figure 33 show actual perfor-
mance for software rendering using Mesa 4.0.4
and XFree86 4.3.0 on a Pentium M 1.6GHz run-
ning Linux. We compare actual performance to
the model α = 1262.5 ns, β = 16.59 ns/pixel.

Drawing a plain color pixel takes 16.745
ns. Adding texturing increases the cost to
180.310 ns. Alpha blending and texturing
costs 222.258 ns. Depth and texturing costs
188.139 ns. Alpha, depth buffer, and textur-
ing costs 230.198 ns. Mipmapped texture upload
(with MIPMAP SGIS) costs 1.210 us + 40.008
ns/pixel.
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