
Paulo W. C. Maciel’ Peter Shirley+

Abstract

A visual navigation system is described which uses texture
mapped primitives to represent clusters of objects to main-
tain high and approximately constant frame rates. In cases
where there are more unoccluded primitives inside the view-
ing frustum than can be drawn in real-time on the worksta-
tion, this system ensures that each visible object, or a cluster
that includes it, is drawn in each frame. The system sup-
ports the we of traditional “level-of-detail” representations
for individual objects, and supports the automatic genera-
tion of a certain type of level-of-detail for objects and clusters
of objects. The concept of choosing a representation from
among those associated with an object that accounts for the
direction from which the object is viewed is also supported.
The level-of-detail concept is extended to the whole model
and the entire scene is stored as a hierarchy of levels-of-detail
that is traversed top-down to iind a good representation for
a given viewpoint. This system does not assume that vis-
ibility information can be extracted from the model and is
thus especially suited for outdoor environments.

1 Introduction

This paper describes a new approach to the “walkthrough”
problem, where a viewer interactively moves through a static
scene database at high and approximately constant hame
rates.

Traditional approaches to this problem use a hardware
graphics pipeline and attempt to minimize the number of
polygons sent to the system. This minimization is achieved
both by culling the entire model or the part of it that is
potentially visible in the next few frames against the view-
ing frustum and using geometrically coarse representations
(levels of detail, or LODs) of individual objects.

The approach described in this paper attempts to extend
the domain of traditional approaches by assuming that sets
of potentially visible objects cannot easily be computed and
at any given frame the visible scene can contain more graph-
ics primitives than state-of-the-art hardware can render in
real-time even if the lowest detail LODs are used for every
object.

The basic strategy underlying the system described in this
paper is the use of impostors. An impostor is an entity that is
faster to draw than the true object, but retains the important

Visual Navigation of Large Environments Using Textured Clusters

visual characteristics of the true object. Traditional LODs
are a particular application of impostors.

The key issue is how to decide which impostors to ren-
der to maximize the quality of the displayed image without
exceeding the available user-specified frame time. The best
approach so far to solve this problem attempts to predict
the complexity of the scene at the current frame and selects
impostors accordingly and is described by Funkhouser and
Sequin [3].

The system described in this paper can be viewed as au
extension of Funkhouser and Sequin’s system with the fol-
lowing new properties:

l The entire database is a single hierarchy which con-
tains drawable impostors (including LODs) for objects
as well as clusters of objects. This is a global general-
ization of the LOD concept to the entire model.

l The system uses the graphics hardware to automat-
ically create this hierarchy, generate impostors, com-
pute their rendering cost, and compute a static portion
of their benefit according to the direction from which
they are viewed.

In Section 2 we revisit the work done by Funkhouser and
Sequin, briefly presenting the main components of their sys-
tem and showing why it doesn’t scale well to arbitrary envi-
ronments. In Section 3 we discuss how to extend the benefit
concept to account for cluster primitives and view-dependent
LODs. In Section 4 we show how the representation selection
process can be formulated as au N-P-complete tree traversal
problem, and present a heuristic solution that generates a
complete, if non-optimal, representation of the model for
display. In Section 5 we discuss our implementation. Fi-
nally, we discuss the limitations of the system in Section 6
and the conclusions in Section 7.

2 Predictive Approach Revisited

The predictive approach described by Funkhouser and Se-
quin assume8 that the system runs on a machine in which
the rendering cost of each object in the model can be es-
timated. This rendering cost is estimated by empirically
obtaining performance parameters of the machine and using
these parameters in a simple formula.

*Department of Computer Science, Lindley Hall, Indiana Uni-
versity, Bloomington, Indiana, pmacielQca.indiana.edu

t Program of Computer Graphics, Cornell University, Ithaca,
New York, shirleyOgraphics.cornell.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication andks date appear; and notice is given
that copying is by permission of the Assocration of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1995 Symposium on Interactive 3D Graphics, Monterey CA USA
0 1995 ACM O-89791 -736-7/95/0004...$3.50

Since effective walkthrough systems need to achieve a bal-
ance between interactivity and visual quality, they use a ben-
efit heuristic to decide the amount of contribution to the
overall scene caused by rendering an object with a particu-
lar accuracy. This heuristic takes into consideration factors
associated to a representation of the object such as image-
space size of object, focus, speed relative to view point, se-
mantics, accuracy of a LOD, and hysteresis with respect to
switching between different LODs.

Objects are selected to render using an incremental opti-
mization algorithm that prioritizes the selection of objects
with high benefit/cost value to render until the user-specified

95

Figure 1: ‘Three representations for a house. The left two
are view independent LODs while the right one is a view
dependent texture map.

frame time is reached. The result is that low-valued visible
objects ma.y not be displayed. In environments where too
many visible primitives are present at a given point in the
simulation, this can result in large “blank” spots on the scene
which would cause a distracting effect.

To reduce the number of primitives rendered at each
frame, visibility information from a pre-processing phase is
used to cull objects that are certainly blocked from view by
partitions. This approach works well for models that can be
subdivided into cells containing open spaces (such as doors
and windows) through which visibility can be determined.
In an outd.oor environment such cells and portals are not
easily identifiable making the pm-processing of such an en-
vironment to extract visibility a hard problem.

Our system is also a predictive system end assumes that it
will run on a multiprocessor machine with texture mapping
capability. We allow for situations where more unoccluded
primitives can occur inside the viewing frustum than can be
rendered in real-time and do not assume that visibility infor-
mation can be extracted from the model. This last feature,
makes the system suitable for navigation of large outdoor
environments.

3 Benefit Calculation

Visual navigation systems use different representations
(LODs) of an object to improve the performance of the sim-
ulation. As explained in the previous section, each LOD
makes a contribution to the quality of the simulation that
can be estimated by a benefit heuristic.

In computing these benefits we face two interesting issues:
how to compute the benefit of individual representations of
objects taking into account their view angle dependent na-
ture (e.g. a roadside billboard has a low benefit when seen
from the side), and how a group of objects is perceived (its
“semantics”‘).

3.1 Benefit of Objects

In our approach, an object can have associated with it not
only the conventional LODs but also any other drawable rep-
resentation that resembles the object from given viewpoints.
Consider the possible representations we can use to render
a house as in Figure 1. In this picture, the first (leftmost)
of these representations is the house object at full detail,
the second is a low LOD representation and the third is just
a single polygon with a texture map representation of the
front of the house.

We classify the third representation as wiew dependent and
the first two a view independent meaning that the view de-
pendent would only be considered for a subset of all possible
viewing directions, while the view independent LODs would
be considered for all viewing angles.

We have divided the contribution to the simulation of ren-
dering a given representation associated with an object in
two parts. One that is intrinsic to the object, the obj,ect’s
benefit, and one that is intrinsic to a representation of the
object, the accuracy with which it represents the full detail
object.

Intrinsic to an object are factors such as its image-space
size (since larrge objects on the screen seem to contribute
more than smaller ones), its distance to the line of sight
(since assuming that the eye is looking to the center of the
screen, objects near the center of view are better resolved
by our visual system than objects in the periphery of view),
relative speed of the object to the viewpoint, and semantics
(role of the o'bject in the simulation). Our per-object benefit
is computed as a weighted average of all these factors and it
is used to guide the selection of representations to render in
Section 4. The weights are empirically determined and. can
be changed for each run of the simulation.

Intrinsic to a representation of an object is its accuracy
with respect to the full detail object, that is, how similar a
given representation is to the actual object for a particular
view angle.

Note that while the benefit of an object (except for its
semantic) can only be determined in real-time and therefore
is inherently dynamic, the accuracy of a representation is
inherently static and can be determined prior to the walk-
through of the model, as described in Section 3.2.

3.2 View Angle Dependent Benefit Calculation

Consider again the house representations in Figure 1. The
left most of these representations should have the highest
benefit regardless of view angle but we might not want to
render it since it is also the most expensive to render. The
benefit that should be assigned to the other two will depend
upon the user’s view angle (for the texture maps) and view
distance (for the low LOD).

A way of incorporating view dependency information into
the benefit heuristic is to measure the accuracy of each of the
object’s representations according to each viewing direction
possible.

Since the space of possible viewpoints and viewing direc-
tions is infinite, we approximate it by discretizing this space
into a finite set of viewing directions, and assuming that
the view distance is in3nite (we use an orthographic pro-
jection). This seems reasonable because we do not expect
to use coarse LODs when the view distance is small. To
tabulate directional benefits, we sample the hemisphere of
directions (Figure 2) and calculate an image of the object
and impostor at each sample point.

The number and location of these samples will depend on
the number of representations that the object has and1 the
possible viewpoints during the walkthrough. For instanc:e, in
the case of the 2D house impostor in Figure 1, we will never
use it unless we are roughly in front of the house, so only
directions around the line perpendicular to the 2D image are
sampled.

We sample each of the viewing directions and measure
the accuracy of each representation and construct a table
that has one entry for each pair (representation, viewin,g di-
rection). Each of these entries contains a similarity value
(accuracy) of the representation measured with respect to
the full detail object for the particular viewing direction.
During the walkthrough, the accuracy of a given representa-
tion and viewing direction can be obtained by accessing this
table.

96

Figure 2: Discretizing the space of viewpoints around an
object. Replication accuracies are shown at three of the
view angles. The low LOD house looks the “best” from the
top.

Ideally the accuracy of an image with respect to the ideal
image should be obtained by a perceptual comparison of the
two images but since we are in search of automatic ways to
determine similarity we resort to computational techniques.
In our implementation we use simple image processing tech-
niques to get this similarity value.

We avoid a simple pixel-by-pixel comparison of the two
images, since slight diEerences on the impostor’s image
would cause two very similar images to have a similarity
close to zero. Because the achromatic channel of vision is the
most important for shape recognition, we start by obtaining
a gray scale version of the two images by simply averaging
the rgb components at each pixel. Since edges are features
on an image that are readily identified by the human visual
system, an edge operator is applied to the images. The im-
ages are convolved with a 5x5 Laplacian operator and its
zero crossings are computed. A subsequent blurring step in-
creases the chances of matching of the two images, which we
then compare pixel-by-pixel.

This image comparison method is far too simple to mimic
human image processing, but does serve as a placeholder in
our system that can be replaced later with a module that
performs better by using segmentation and high level pro-
cessing.

3.3 Benefit of Clusters

This section is meant to highlight that much more research
needs to be done on how benefit heuristics can draw on per-
ceptual behavior. We argue that a per-object benefit heuris-
tic does not address how humans perceive a collection of ob-
jects when seen as a whole. Briefly, if two objects a and /l
are represented by an impostor 7 and have benefits B, and
Bp what should the benefit B, of 7 be?. B, is not simply
the sum of Ba and Bp since a and /3 when viewed as a group
might give a diEerent contribution (meaning) to the simula-
tion then the objects alone would, that is, the benefit of all
the objects in a scene does not translate into a perceptual
measure for the entire scene.

A practical example would be to consider a walkthrough
of a battle field containing many soldiers and guns. In this
situation the benefit of a gun and a soldier do not add up
to form the benefit of a soldier holding a gun, particularly if
the soldier is pointing the gun toward the user of the system.

Therefore we conclude that to determine the benefit of an
object in some cases is undecidable without knowing what
surrounds it. As pointed out by Gestalt Psychologists [7],

the meaning conveyed by an object may be more than merely
the “addition” of the meanings conveyed by each one of the
objects alone, that is, the whole conveys more information
then the sum of its parts.

While realizing that it is extremely difficult to account
for how objects interact in a scene we still use a per-object
benefit heuristic knowing that it may not be suitable for
some groupings of objects.

4 Navigation System Design

The ultimate goal of this work is to design a visual navigation
system that is able to keep a user-specified uniform kame
rate when displaying a large environment.

We begin by presenting a general framework for visual
navigation systems. We then formalize the navigation prob
lem as an NP-complete tree traversal problem and explain
in detail the design of our system.

4.1 Framework for Visual Navigation Systems

In many cases, conventional LODs are either not readily
available, are expensive, or are time consuming to generate.
Since these LODs are simply representations of the “true”
objects they do not necessarily need to be versions of the
same object with fewer geometric primitives (or drawn with
a less accurate rendering algorithm such as flat shading in-
stead of Gouraud shading) but rather representations that
can be drawn on the computer screen in less time than the
true object and provide the simulation with a feel similar to
that obtained by using the full detail object.

With this in mind, our design allows an object to be as-
sociated to many different representations that resembles it,
possibly from different view angles.

4.1.1 Object-Oriented Design

The main abstraction for a single object, is the “conceptual
object” abstraction. It corresponds to any object in the
model that has a well defined meaning in the simulation,
such as, a car or a building. Associated with the conceptual
object is a set of “drawable representations”, which have
characteristics similar to the actual object it represents.

The “drawable representation” abstraction represents a
variety of hardware drawable representation or impostors for
a given conceptual object. The abstractions for drawables
encapsulate hardware defined primitives such as meshes of
triangles, splines, list of polygons, etc., as well as the impos-
tor representations presented in Section 4.1.2. This encap-
sulation of both hardware primitives and impostors allows
the design of very efficient rendering routines that extract
the most performance of the graphics subsystem. Other im-
postor abstractions may be added to this design as deemed
necessary to solve a particular problem or to add a particular
feature to the walk-through program.

The conceptual object’s interface is defined by virtual
functions to compute the object’s benefit, visibility, and a
“draw” function that is redefined for each specific drawable
representation. The drawable representation’s interface is
defined by functions to compute the drawable’s rendering
cost, accuracy, and by customized “draw” functions.

4.1.2 Types of Impostors

As mentioned in Section 3.1, we allow an object to be rep
resented by both view dependent and view independent im-

97

postors.
Examples of view dependent impostors are:

l A texture map that is pasted onto the appropriate face
of an object’s bounding box. This texture map is called
a textured cluster when it corresponds to an image of
a group of objects.

l Anot,her view dependent texture map is also known as
billboard in [6] and is obtained in the same way as tex-
ture maps. A billboard is centered at an object’s center
and :made to rotate in such a way that it always face
the observer. Since one billboard is computed for each
face of the object’s bounding box as the observer moves
around the object a merent billboard is selected to dis-
play according to the viewpoint. This impostor is useful
to represent objects that are approximately rotationally
symmetric such as pine trees.

l Another variant of the texture map described above is
a pseudstexture map’. A pseudo-texture map is a tri-
angular mesh (or a quadrilateral strip) onto which a
textcue map is pasted in such a way that each pixel in
the image is associated to a pair of triangles (or quadri-
lateral) in the mesh.

Examples of view independent impostors are:

l The conventional levels-of-detail, i.e., geometrically
coarse versions of a given object’.

l Boxes whose faces have the average areas and colors as
the corresponding sides of the object’s bounding box.

l Texture mapped boxes. This representation uses tex-
ture maps that are pasted onto each face of the object’s
bounding box and is useful to represent box like objects
such as the Standard Oil Building in Chicago.

4.2 Impostor Selection

There are certain cases where specific impostors are more
suitable than others and we can usually “suggest” to the
walkthrough program which representation to display at a
given point in the simulation.

For example, if the image-space size i’V of an object is
less then a few pixels then the representation that should
be used is the average box above. If N is greater then a
prefixed maximum size then the full detail object might be
required. If different LODs are present in the model, then
different image space size thresholds may be used to select
the appropriate LOD to be displayed.

Box-like and symmetric objects can be displayed using a
texture mapped box and a billboard, respectively. Texture
maps can be selected according to the obesemer’s viewpoint.
For example, if four texture maps are used for each face of
an object’s bounding box, then the appropriate texture map
for a given viewpoint can be selected as follows:

1. In a pre-processing phase, associate to each texture map
a number corresponding to the region it belongs as in
Figure 3.

lit can be used in machines that do not have texture mapping
hardware.

2Some toolkits such aa Performer[G] provide routines to auto-
matically generate coarse versions of a given full-detail object.

98

. . . . - 3 . . ,/
. ,,/

. . . . , ,/’ - , Y. .:.

0..
L /,’ ‘...,,x

- 2
,/ ..,

,,’
,/’ - 1 ‘y

Figure 3: Possible viewpoint regions in object coordinates.

2. During the walkthrough we determine the viewpoint
with respect to the object’s coordinate system and
therefore the region it is in.

In some situations, both a view dependent and a view
independent representation are suitable. When this iis the
case, we cau decide upon these two representations b’y ob-
taining the accuracy of each representation for the particular
observer view angle using the table described in Section 3.2
and then select the representation with the highest accu-
racy/cost ratio. This heuristic is particularly useful in cases
where the observer’s line of sight is approaching a 45 dlegre
angle with the line perpendicular to the texture malp. In
such a case although the texture map may have a low ren-
dering cost, its accuracy will also have a low value which will
favor the selection of a possibly more costly view dependent
representation.

4.3 Formalization of the Problem

We begin by defining a meta-object abstraction to be an en-
tity with one or more hardware drawable representations as
in the framework described in Section 4.1. It is an abstrac-
tion for both conceptual objects and groups of objects:.

As before, a hardware drawable representation is an entity
that ca.n be rendered by the graphics hardware to represent
objects and has associated to it a rendering cost and a mea-
sure of its “contribution” to the simulation.

The model is then defined as a collection of conceptual
objects at specific positions and orientations in space that
forms the environment in which the user navigates.

The model hierarchy is defined to be a tree structure
whose node;3 are meta-objects that provide multiple repre
sentations of the model, each representing it at a given ren-
dering time and providing the user with a given perception
of it. In this hierarchy each node contains drawable rep
resentations of its children. The root contains the coarsest
representati,ons for the entire model with the lowest possible
rendering cost while the leaves form the perceptually best
representation of the model with the highest rendering cost.

More formally, the model hierarchy M is a tree structure
that can recursively be defined by the following rules:

1.

2.

A meta-object that has no children is a model hierarchy
with ju.st one node, the root node.

Let Ml, Ms. ..M,, be model hierarchies whose root nodes
are the meta-objects ml, ml...m,, respectively, that
represent sets of conceptual objects and have associ-
ated with each of them the sets rl,rz...r,, of drawable
representations. Let m be a meta-object that repre-
sents the union of rni and has associated to it a set r
of drawable representations such that Cost(Maz(r)) <
CT=, Cost(Min(ri)), where Maz(r) is the repreaenta-
tion that has the highest cost among those in r, Mi’n(ri)
is the representation that has the lowest cost among

those in ri and Cost(z) is the rendering cost of repre-
sentation x. M is then defined to be a model hierarchy
if m is the parent of rni for i = 1.. . n.

Figure A shows how the model of a city would be orgz+
nixed to form a hierarchy in which each node has a set of
impostors to represent the objects it subsumes.

Given these definitions, we state the walk-through prob-
lem as a tree traversal problem:

‘Select a set of nodes in the model hierarchy that pro-
vides the user with a perceptually good representation of
the model”, according to the following constraints:

1. The sum of the rendering cost of all selected nodes is
less than the user specified frame time.

2. Only one node can be selected for each path from the
root node to a leaf node, since each node already con-
tains drawable representations that represent all its de-
scendant nodes.

The problem as described here is an NP-complete tree
traversal problem and is a variant of the “Knapsack prob-
lem”, which is not surprising since we are generalizing the
system that Funkhouser and Sequin showed to be a knapsack
problem. The candidate sets from which only one element
will be selected to be put in the knapsack are the set of rep-
resentations associated to each meta-object. The knapsack
size is the frame time per frame that the selected represen-
tations must not exceed. The cost of each element is the
rendering cost associated to a representation. The profit of
an element is the accuracy of the representation plus the
benefit of the object with which it is associated.

To solve this problem we use the framework described in
Section 4.1 and develop a model hierarchy building alge
rithm and a heuristic representation selection algorithm.

4.4 Design of the Model Hierarchy

We partition the entire model according to our formalization
of the problem, and form a tree structure in which each node
contains low-cost representations for the nodes it subsumes.

The structure that we use is a variation of an octree that
is a bounding volume hierarchy, that can be used to cull
objects against the viewing frustum aud also serves as a
rendering aid, since we can draw its nodes.

This tree is constructed in a bottom-up fashion instead of
the traditional top-down recursive way, so that we can see
which objects are being “clustered”3 together as described
in Section 5.

The criteria used to group objects takes into account only
the proximity of objects and our model hierarchy building
program is designed to cluster together nearby objects first
in the way illustrated in the 2D example of Figure 4.

According to a user-supplied number of divisions in x, y,
and z axis of the bounding box of the entire model an initial
octree cell sire and therefore tree depth is specified. We start
by creating a “child list” that contains all the conceptual
objects in the model with their bounding boxes. This initial
list will correspond to the leaves of the tree. The child list
is used to generate the next level up of the tree. For each

3What is meant by clustering is basically the generation of
impostors for the group of objects.

2D Example:

Figure 4: Generating the model hierarchy octree. Represen-
tations are generated for cells with more than one object.

Btructural (subtree A)

Figure 5: Subtree A as depicted on Figure 4.

level of the tree and for each cell in that level, we get the
set of objects that are completely inside the cell. If this
set is empty we move on to the next cell. Otherwise we
compute the bounding box of the objects in the cell and
discard it if the bounding box is already in the child list; since
impostor representations for that set of objects had already
been created. If it is not in the list we create impostor
representations for the cluster inside the cell.

In our implementation clusters are generated by creating
texture maps’ of the objects from given view angles and their
generation is described in Section 5. After the impostor rep
resentations have been created, we make the cell point to its
children and remove them from the child list. We then add
the new cell to the end of the child list and repeat the process
until we obtain a single cell with impostor representations
for the entire model.

It is important to note that at each time we cluster objects
we always take into account the actual objects that the cell
subtends instead of previously computed clusters.

Note that cluster representations are generated only if
there is more then one object totally inside each cell. Single
objects inside a cell as well as objects on cell boundaries will
be grouped in the next levels up in the hierarchy. Figure 5
shows the structure of subtree A depicted in Figure 4.

4.5 ‘lkaversal of the Model Hierarchy

Due to the NP-complete nature of selecting representations
to render from the model hierarchy, we have devised a heuris-
tic algorithm that quickly (in less than the frame time) tra-
verses the model hierarchy. This algorithm selects repre-
sentations to be rendered, accumulating rendering cost until
the user-specified frame time is reached. When this occurs,

4Actually, representations only need to obey the cost require-
ment stated in Section 4.3.

99

the algorithm stops and sends a list of representations to the
graphics pipeline.

The tree traversal is top-down from the root node and
first traverses the branches that contain the most &‘benefi-
cisl” nodes according to the benefit heuristic presented in
Section 3.1.

The problem is that our per-object benefit heuristic asso
ciates benefit not to cluster representations but to represen-
tations for conceptual objects that are at the very bottom of
the tree. High up in the hierarchy we do not know to which
branches of the tree the most beneficial objects belong. Be-
cause of this, we have decided to break the selection of nodes
to render in two phases as described below.

4.5.1 First Pass: Assign Initial Representation,
I3ene&, Visibility, and Cost.

In this first phase of the selection process, we recursively
descend the model hierarchy in a depth-first manner and
associate a benefit and visibility value with each node in the
tree, and an initial drawable representation.

Since ,the leaves represent single objects, their benefits
are computed as a weighted average of the factors intrinsic
to objects as described in Section 3.1. The benefit value
sssociate8d to a tree node is taken to be the maximum value
of all the benefits of its children.

The visibility of nodes are computed by checking if the
bounding box in eye-coordinates of the bounding box of the
object intersects the viewing frustum. A node is said to be
visible if at least one of its children is visible.

At a given point in the simulation a view dependent and a
view independent representation for an object is selected us-
ing the criteria specified in Section 4.2. The rendering cost
and accuracy of drawable representations that are stored
with each representation in the model are used to select
which of these two representations will be assigned to be
the initial representation of the node. The representation
that has .the highest accuracy/cost ratio is selected to be the
initial representation. In the next phase (described below),
if there is still frame time left we try to improve on this
initial choice.

After initial representations are selected to each of a
node’s children, the children’s cost is stored with the node
to be used in the next phase.

4.5.2 Second Pass: Best-First Tree Traversal.

In this phase, we use the information obtained in the pre-
vious phase for each node of the model hierarchy to imple-
ment an efficient ‘best-first’ tree traversal. The result of this
traversal is a rendering list of drawable representations that
is sent to the graphics hardware for rendering as shown in
Figure 6.

To implement this strategy, we make use of a list of meta-
objects organized in decreasing order of benefit (computed
in the previous phase). We keep accumulating frame time as
we select representations to render and whenever the time
required to render the children of a node plus the total ac-
cumulated time so far exceeds the &true time we insert the
representation for the node in the rendering list and move
on to the next node.

The algorithm first explores the branches of the tree con-
nected to the most beneficial nodes as follows: Start by in-
serting the root node in the list and setting the total render-
ing cost to be the cost of rendering the initial representation
associated to the root node. We then process this list until

UlrseleetrdNcuk

f&%8% sekctedNode

Figure 6: Tree representing the model hierarchy and the set
of nodes to, be rendered as a linked list.

it is empty. We remove the element in the front of the list
and discard it if it is not visible.

If the node is a leaf node (containing a conceptual object)
we check if there is still rendering time left to select a better
representation for the object. In the positive case we select
to render (insert in the rendering list) the next higher accu-
racy representation for the node and add its rendering time
to the total accumulated rendering time.

In the case where the node contains representations for a
cluster of objects, we check if instead of rendering the (cluster
representation we still have time to render all of its children,
i.e., the total accumulated time plus the cost of rendering
the node’s children does not exceed the frame time. In the
positive case, we insert each of its visible children in the
list ordered by each ones benefit and add their cost to the
total accumulated rendering time. Otherwise we insert the
cluster’s representation into the rendering list.

Note that at each point in this traversal, a complete rep
resentation of the scene is stored in the list of meta-objects
and whenever there is frame time left to render the children
of a node, before adding the cost of the children to the total
accumulated cost we subtract the cost of the initial repre-
sentation for the node.

4.6 Temporal Coherence

While navigating through the model the viewpoint can ran-
domly get close or far away from “important” objects that
require most of the frame time. This sometimes causes a
seemingly random switch from a cluster representation to
the representations of the actual objects (or vice-versa). The
idea of using frame-to-frame temporal coherence as used by
Funkhouser and Sequin, is used here to mi ninimize this ef-
fect by disc:ouraging switching from representations for par-
ent nodes to representations for children nodes. We Ikeep a
counter of the number of times the walkthrough program de-
cided to switch from parent to children. The actual switch-
ing is only aIlowed if this counter exceeds a prefixed thresh-
old. The delayed switching from children representations to
cluster representations is not implemented since it would oc-
cur in a situation that most of the frame time has already
been allocated and this delay would greatly reduce the frame
rate.

100

5 Implementation

This research has resulted in the implementation of three
programs on a four processor SGI Onix workstation with
a RealityEngine board: the model hierarchy building and
representation generation program, the cost and accuracy of
representations measurement program, and the w&through
program.

These programs are implemented in C++, use GL[8] for
rendering, and have an X-Motif GUI to facilitate parameter
changes for system evaluation.

5.1 Model Hierarchy Building and Representa-
tion Generation

The program that builds the model hierarchy implements
the hierarchy building algorithm described in section 4.4 and
opens two windows, as shown in Figure B. The right window
displays the objects/clusters and compute texture maps for
each of the sides of their bounding boxes while the left illus-
trates the process of building the hierarchy. In this image,
the dots represents objects that were not “clustered” yet.
The purple square with green dots is the bounding box of
the objects (in green) that completely fit inside it and the
“red” band is showing groups of objects already “clustered”.

View dependent impostors such as texture maps are au-
tomatically obtained in the following way with the help of
the graphics hardware:

Set up a viewpoint, a viewing direction, and an ortho-
graphic projection matrix.

Draw the object(s) in a complete% black background
and adjust the texture resolution by scaling the ob-
ject(s) inside the orthographic viewing volume.

Grab the resulting image from the window (right win-
dow in Figure B) and set the alpha component of black
pixels to zero, so that if the objects have holes we can
see through when they are rendered.

Average color boxes are also obtained in a similar fashion.
The average color for each face is just the average of the rgb
colors of all non-black pixels and the average area is the
number of all non-black pixels in the face’s image that is
converted to au area in object coordinates.

The generation of a pseudo-texture map involves a pre-
processing of the original image because if there are too
many pixels on the image the rendering of the texture would
require too many meshed triangles. Therefore, we succes-
sively shrink the original image by convolving it with a Gaus-
sian filter that averages the RGB components of the pixels.

5.2 Cost and Accuracy of Representations
Measurement

The cost of each representation is measured by selecting a
specific representation and drawing it a number of times in
order to get an average rendering time as shown in Figure
C.

The accuracy of an impostor is measured using the proce-
dure described in Section 3.2 and a table that describes how
similar each of the representations is compared to the origi-
nal image of the object for five directions around the object

sWhat ultimately determines the resolution of the texture map
is the complexity (or granularity of details) that the object(s)
exhibit(s) from a particular direction.

Figure 7: Checking the visibility of a set of objects against
the viewing frustum.

is generated. One of the most immediate improvements we
need to make is the use of more directions in this table.

5.3 Visual Navigation

The walkthrough program implements the framework de-
scribed in Section 4.1 and the traversal algorithms described
in Section 4.5. The computation of the representation to be
rendered in the next frame is done in one processor while
another one holds the graphics pipeline to render the cur-
rent frame. Semaphores are used to synchronize the two
processes.

The traversal algorithm assumes that visibility of bound-
ing boxes can be determined quickly. This can be done by
first computing the bounding box in eye-coordinates of the
object’s bounding box. We then compute its intersection
with a box formed by extending the slice of the viewing
frustum corresponding to the farthest z-value of this box to
its nearest z-value. This visibility test can return true even
though no object inside the cluster is also inside the viewing
frustum as shown in Figure 7.

This problem is solved by the first phase of the traversal
algorithm since it marks a cluster as visible if and only if
at least one of the objects that it represents is inside the
viewing frustum. If computing the visibility of individual
objects are taking too much time we can use a faster test
and check if spheres enclosing groups of objects intersect
the viewing liustum.

5.4 Performance

Our test model has around 1.6 million polygons and dur-
ing our tests we have constrained the number and size of
texture maps generated by the hierarchy building program
to the available texture memory of one megatexel (one mil-
lion texture pixels) by selecting appropriate octree cell sizes
and adjusting the resolution of the texture representation
for objects and clusters.

For this model we were able to keep a frame rate of around
16 frames per second (fps) for a target frame rate of 30 fps
throughout the simulation without too much degradation
in image quality. Figure D shows the image seen by the
observer (left) and a top view of the the same scene showing
where clusters are being displayed (right).

Figure 8 shows the user mode (right) and real time (left)
throughout a simulation path of the model. The user time
graph shows that our estimation of cost and rendering algo-
rithm is achieving the goal of keeping a uniform and high
frame rate. The real time graph show spikes due to random
interrupts and a gap with respect to the l/30 line due to
smooth LOD switching using transparency blending.

101

Pedthw

Figure 8: Plot frame versus frame time with (left) and with-
out (right) smooth LOD switching.

These interrupts can be minimized by mechanisms such as
processor isolation, interrupts redirection, processor locking
and so OIL as described in [9].

The s8ame model, without the model hierarchy, takes
around 1 frame per second for certain viewpoints in our test
path.

6 Limitations

One limitation of this system is the number of texture maps
that can be used to represent objects and clusters. As the
system uses more texture maps to represent clusters and
individual objects, the chance of a texture-cache miss in-
creases. .A cache miss results in an unpredictable interrupt
that will iinvariably defeat the purpose of a predictive system.
Future methods of intelligent prefetch of textures that are
likely to be needed could make texture cache misses much
less likely, and thus allow the use of many more textured
impostors.

We have not addressed the illumination of the environ-
ment. Although the illumination of a complex environment
can be computed using the radiosity method in a view in-
dependent fashion the shading attributes of objects (adding
specular highlights) and clusters would need to be incorpo-
rated to their representations. Instancing of objects would
not be practical since two identical objects in different lot+
tions in the model would have dserent shading attributes.
As the size of texture memory increases these problems will
become l,ess serious, but they will not go away.

The most serious limitation in our current implement*
tion is that our tree traversal requires that a cluster know
something about the benefits of its children, so all primitives
are visited once per frame in the first pass of the algorithm,
and therefore it is O(n), where n is the number of objects.
Our traversal algorithm is top-down, so there is no reason
it could not, be O(log n) if a more intelligent traversal algo-
rithm is used.

7 Co,nclusion

We have presented a way of using clusters of objects to im-
prove the performance of an LOD-based visual navigation
system. When there are too many visible LODs to render
in real-time, we render single texture-mapped cluster primi-
tives in place of groups of individual LODs. The techniques
used to generate clusters can also be used to generate a par-
ticular tj-pe of textured LODs for single primitives. We have

also discussed some limitations of the object-based benefit
heuristic, and extended it to account for the variability of
an LOD’s quality as the view angle changes.

The main lessons to be drawn from this work are that the
predictive framework of Funkhouser and Squin extends well
to a hierarchical version of the LOD concept, and tha.t pre-
computed visibility information is not essential for ef6cient
visual navigation programs.

8 Acknowledgments

Thanks to :Ken Chiu and Aaron Yonas for their suggestions
on the draft of this paper. Thanks to Ken Chiu and Paul
Bourke for the model of a tree and a town house, respectiv-
elly, used iu the color plates. Thanks to the Brazilian gov-
ernment agency CAPES, for providing the fist author the
financial support to conduct this research. Thanks to the Re-
search and University Graduate Schools (RUGS) Research
Facility Fimd (RFF) and the NSF CDA-92-23008 grants that
provided the graphics workstations that were used in this re-
search. The second author was also supported by NSF RIA
grant CCR-92-09457.

Referen.ces

PI

PI

[31

PI

[51

PI

[71

PI

PI

John 14. Airey, John H. Rohlf, and Jr Frederick
P. Brooks. Towards image realism with interactive up-
date rates in complex virtual building environments.
Computer Gmphics, pages 41-50, 1990.

Kurt Akeley. Reality engine graphics. Pmctzdings
of SIGGRAPH’93 (Anaheim, California, August l-6,
1993). In Computer Graphics Proceedings, Annual Con-
ference Series, 1993, ACM SIGGRAPH, pages 109-116.

Thornag A. Funkhouser and Carlo H. Sequin. Ad.aptive
display algorithm for interactive frame rates during vi-
sualization of complex virtual environmnets. Computer
Gmphics, pages 247-254.

Thomas A. Funkhouser, Carlo H. Sequin, and Seth
Teller. Management of large amounts of data in iuterac-
tive building walkthroughs. Proceedings of the 1992 Sym-
posium on Intemctive 30 Gmphics (Cambridge, Mas-
sachusetts, March 29 - April 1, 1992), special i:zsue of
Computer Gmphics, ACM SIGGRAPH, pages 11-20,
1992.

Paul0 Maciel. Visual navigation of largely unoccluded
environments using textured clusters. Ph.D. Thesis, Jan-
uary 1995. Indiana University, Bloomington.

John Rohlf and James Helman. Iris performer: A
high performance multiprocessing toolkit for real-time
3D graphics. Pmceedings of SIGGRAPH’SI (Orlando,
Florida, July 24-29, 1994). In Computer Gmphics Pm-
ceedings, Annual Conference Series, 1994, ACM SIG-
GRAP.K, pages 381-394.

Harvey R. SchiEman. Sensation and Perception an Inte-
gmted .Appmach. John Wiley & Sons, New York, 1990.

Inc. Silicon Graphics. Gmphics Libmry Programming
Guide, Volumes I and II, 1992.

Inc. Silicon Graphics. React In Iti: A description
of real-time capabilities of Iriz ~5.3 on Onyz/Chullenge
multipi~essor systems., 1994.

102

Bulldlng1.32

Figure A: Model hierarchy for a city
Figure C: Measuring the rendering

cost of a representation.

Figure B: Building of the model hierarchy

Figure D: User view (left) and top view of same scene (right) showing clusters in
green.

