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Abstract 

A visual navigation system is described which uses texture 
mapped primitives to represent clusters of objects to main- 
tain high and approximately constant frame rates. In cases 
where there are more unoccluded primitives inside the view- 
ing frustum than can be drawn in real-time on the worksta- 
tion, this system ensures that each visible object, or a cluster 
that includes it, is drawn in each frame. The system sup- 
ports the we of traditional “level-of-detail” representations 
for individual objects, and supports the automatic genera- 
tion of a certain type of level-of-detail for objects and clusters 
of objects. The concept of choosing a representation from 
among those associated with an object that accounts for the 
direction from which the object is viewed is also supported. 
The level-of-detail concept is extended to the whole model 
and the entire scene is stored as a hierarchy of levels-of-detail 
that is traversed top-down to iind a good representation for 
a given viewpoint. This system does not assume that vis- 
ibility information can be extracted from the model and is 
thus especially suited for outdoor environments. 

1 Introduction 

This paper describes a new approach to the “walkthrough” 
problem, where a viewer interactively moves through a static 
scene database at high and approximately constant hame 
rates. 

Traditional approaches to this problem use a hardware 
graphics pipeline and attempt to minimize the number of 
polygons sent to the system. This minimization is achieved 
both by culling the entire model or the part of it that is 
potentially visible in the next few frames against the view- 
ing frustum and using geometrically coarse representations 
(levels of detail, or LODs) of individual objects. 

The approach described in this paper attempts to extend 
the domain of traditional approaches by assuming that sets 
of potentially visible objects cannot easily be computed and 
at any given frame the visible scene can contain more graph- 
ics primitives than state-of-the-art hardware can render in 
real-time even if the lowest detail LODs are used for every 
object. 

The basic strategy underlying the system described in this 
paper is the use of impostors. An impostor is an entity that is 
faster to draw than the true object, but retains the important 
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visual characteristics of the true object. Traditional LODs 
are a particular application of impostors. 

The key issue is how to decide which impostors to ren- 
der to maximize the quality of the displayed image without 
exceeding the available user-specified frame time. The best 
approach so far to solve this problem attempts to predict 
the complexity of the scene at the current frame and selects 
impostors accordingly and is described by Funkhouser and 
Sequin [3]. 

The system described in this paper can be viewed as au 
extension of Funkhouser and Sequin’s system with the fol- 
lowing new properties: 

l The entire database is a single hierarchy which con- 
tains drawable impostors (including LODs) for objects 
as well as clusters of objects. This is a global general- 
ization of the LOD concept to the entire model. 

l The system uses the graphics hardware to automat- 
ically create this hierarchy, generate impostors, com- 
pute their rendering cost, and compute a static portion 
of their benefit according to the direction from which 
they are viewed. 

In Section 2 we revisit the work done by Funkhouser and 
Sequin, briefly presenting the main components of their sys- 
tem and showing why it doesn’t scale well to arbitrary envi- 
ronments. In Section 3 we discuss how to extend the benefit 
concept to account for cluster primitives and view-dependent 
LODs. In Section 4 we show how the representation selection 
process can be formulated as au N-P-complete tree traversal 
problem, and present a heuristic solution that generates a 
complete, if non-optimal, representation of the model for 
display. In Section 5 we discuss our implementation. Fi- 
nally, we discuss the limitations of the system in Section 6 
and the conclusions in Section 7. 

2 Predictive Approach Revisited 

The predictive approach described by Funkhouser and Se- 
quin assume8 that the system runs on a machine in which 
the rendering cost of each object in the model can be es- 
timated. This rendering cost is estimated by empirically 
obtaining performance parameters of the machine and using 
these parameters in a simple formula. 
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Since effective walkthrough systems need to achieve a bal- 
ance between interactivity and visual quality, they use a ben- 
efit heuristic to decide the amount of contribution to the 
overall scene caused by rendering an object with a particu- 
lar accuracy. This heuristic takes into consideration factors 
associated to a representation of the object such as image- 
space size of object, focus, speed relative to view point, se- 
mantics, accuracy of a LOD, and hysteresis with respect to 
switching between different LODs. 

Objects are selected to render using an incremental opti- 
mization algorithm that prioritizes the selection of objects 
with high benefit/cost value to render until the user-specified 
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Figure 1: ‘Three representations for a house. The left two 
are view independent LODs while the right one is a view 
dependent texture map. 

frame time is reached. The result is that low-valued visible 
objects ma.y not be displayed. In environments where too 
many visible primitives are present at a given point in the 
simulation, this can result in large “blank” spots on the scene 
which would cause a distracting effect. 

To reduce the number of primitives rendered at each 
frame, visibility information from a pre-processing phase is 
used to cull objects that are certainly blocked from view by 
partitions. This approach works well for models that can be 
subdivided into cells containing open spaces (such as doors 
and windows) through which visibility can be determined. 
In an outd.oor environment such cells and portals are not 
easily identifiable making the pm-processing of such an en- 
vironment to extract visibility a hard problem. 

Our system is also a predictive system end assumes that it 
will run on a multiprocessor machine with texture mapping 
capability. We allow for situations where more unoccluded 
primitives can occur inside the viewing frustum than can be 
rendered in real-time and do not assume that visibility infor- 
mation can be extracted from the model. This last feature, 
makes the system suitable for navigation of large outdoor 
environments. 

3 Benefit Calculation 

Visual navigation systems use different representations 
(LODs) of an object to improve the performance of the sim- 
ulation. As explained in the previous section, each LOD 
makes a contribution to the quality of the simulation that 
can be estimated by a benefit heuristic. 

In computing these benefits we face two interesting issues: 
how to compute the benefit of individual representations of 
objects taking into account their view angle dependent na- 
ture (e.g. a roadside billboard has a low benefit when seen 
from the side), and how a group of objects is perceived (its 
“semantics”‘). 

3.1 Benefit of Objects 

In our approach, an object can have associated with it not 
only the conventional LODs but also any other drawable rep- 
resentation that resembles the object from given viewpoints. 
Consider the possible representations we can use to render 
a house as in Figure 1. In this picture, the first (leftmost) 
of these representations is the house object at full detail, 
the second is a low LOD representation and the third is just 
a single polygon with a texture map representation of the 
front of the house. 

We classify the third representation as wiew dependent and 
the first two a view independent meaning that the view de- 
pendent would only be considered for a subset of all possible 
viewing directions, while the view independent LODs would 
be considered for all viewing angles. 

We have divided the contribution to the simulation of ren- 
dering a given representation associated with an object in 
two parts. One that is intrinsic to the object, the obj,ect’s 
benefit, and one that is intrinsic to a representation of the 
object, the accuracy with which it represents the full detail 
object. 

Intrinsic to an object are factors such as its image-space 
size (since larrge objects on the screen seem to contribute 
more than smaller ones), its distance to the line of sight 
(since assuming that the eye is looking to the center of the 
screen, objects near the center of view are better resolved 
by our visual system than objects in the periphery of view), 
relative speed of the object to the viewpoint, and semantics 
(role of the o'bject in the simulation). Our per-object benefit 
is computed as a weighted average of all these factors and it 
is used to guide the selection of representations to render in 
Section 4. The weights are empirically determined and. can 
be changed for each run of the simulation. 

Intrinsic to a representation of an object is its accuracy 
with respect to the full detail object, that is, how similar a 
given representation is to the actual object for a particular 
view angle. 

Note that while the benefit of an object (except for its 
semantic) can only be determined in real-time and therefore 
is inherently dynamic, the accuracy of a representation is 
inherently static and can be determined prior to the walk- 
through of the model, as described in Section 3.2. 

3.2 View Angle Dependent Benefit Calculation 

Consider again the house representations in Figure 1. The 
left most of these representations should have the highest 
benefit regardless of view angle but we might not want to 
render it since it is also the most expensive to render. The 
benefit that should be assigned to the other two will depend 
upon the user’s view angle (for the texture maps) and view 
distance (for the low LOD). 

A way of incorporating view dependency information into 
the benefit heuristic is to measure the accuracy of each of the 
object’s representations according to each viewing direction 
possible. 

Since the space of possible viewpoints and viewing direc- 
tions is infinite, we approximate it by discretizing this space 
into a finite set of viewing directions, and assuming that 
the view distance is in3nite (we use an orthographic pro- 
jection). This seems reasonable because we do not expect 
to use coarse LODs when the view distance is small. To 
tabulate directional benefits, we sample the hemisphere of 
directions (Figure 2) and calculate an image of the object 
and impostor at each sample point. 

The number and location of these samples will depend on 
the number of representations that the object has and1 the 
possible viewpoints during the walkthrough. For instanc:e, in 
the case of the 2D house impostor in Figure 1, we will never 
use it unless we are roughly in front of the house, so only 
directions around the line perpendicular to the 2D image are 
sampled. 

We sample each of the viewing directions and measure 
the accuracy of each representation and construct a table 
that has one entry for each pair (representation, viewin,g di- 
rection). Each of these entries contains a similarity value 
(accuracy) of the representation measured with respect to 
the full detail object for the particular viewing direction. 
During the walkthrough, the accuracy of a given representa- 
tion and viewing direction can be obtained by accessing this 
table. 
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Figure 2: Discretizing the space of viewpoints around an 
object. Replication accuracies are shown at three of the 
view angles. The low LOD house looks the “best” from the 
top. 

Ideally the accuracy of an image with respect to the ideal 
image should be obtained by a perceptual comparison of the 
two images but since we are in search of automatic ways to 
determine similarity we resort to computational techniques. 
In our implementation we use simple image processing tech- 
niques to get this similarity value. 

We avoid a simple pixel-by-pixel comparison of the two 
images, since slight diEerences on the impostor’s image 
would cause two very similar images to have a similarity 
close to zero. Because the achromatic channel of vision is the 
most important for shape recognition, we start by obtaining 
a gray scale version of the two images by simply averaging 
the rgb components at each pixel. Since edges are features 
on an image that are readily identified by the human visual 
system, an edge operator is applied to the images. The im- 
ages are convolved with a 5x5 Laplacian operator and its 
zero crossings are computed. A subsequent blurring step in- 
creases the chances of matching of the two images, which we 
then compare pixel-by-pixel. 

This image comparison method is far too simple to mimic 
human image processing, but does serve as a placeholder in 
our system that can be replaced later with a module that 
performs better by using segmentation and high level pro- 
cessing. 

3.3 Benefit of Clusters 

This section is meant to highlight that much more research 
needs to be done on how benefit heuristics can draw on per- 
ceptual behavior. We argue that a per-object benefit heuris- 
tic does not address how humans perceive a collection of ob- 
jects when seen as a whole. Briefly, if two objects a and /l 
are represented by an impostor 7 and have benefits B, and 
Bp what should the benefit B, of 7 be?. B, is not simply 
the sum of Ba and Bp since a and /3 when viewed as a group 
might give a diEerent contribution (meaning) to the simula- 
tion then the objects alone would, that is, the benefit of all 
the objects in a scene does not translate into a perceptual 
measure for the entire scene. 

A practical example would be to consider a walkthrough 
of a battle field containing many soldiers and guns. In this 
situation the benefit of a gun and a soldier do not add up 
to form the benefit of a soldier holding a gun, particularly if 
the soldier is pointing the gun toward the user of the system. 

Therefore we conclude that to determine the benefit of an 
object in some cases is undecidable without knowing what 
surrounds it. As pointed out by Gestalt Psychologists [7], 

the meaning conveyed by an object may be more than merely 
the “addition” of the meanings conveyed by each one of the 
objects alone, that is, the whole conveys more information 
then the sum of its parts. 

While realizing that it is extremely difficult to account 
for how objects interact in a scene we still use a per-object 
benefit heuristic knowing that it may not be suitable for 
some groupings of objects. 

4 Navigation System Design 

The ultimate goal of this work is to design a visual navigation 
system that is able to keep a user-specified uniform kame 
rate when displaying a large environment. 

We begin by presenting a general framework for visual 
navigation systems. We then formalize the navigation prob 
lem as an NP-complete tree traversal problem and explain 
in detail the design of our system. 

4.1 Framework for Visual Navigation Systems 

In many cases, conventional LODs are either not readily 
available, are expensive, or are time consuming to generate. 
Since these LODs are simply representations of the “true” 
objects they do not necessarily need to be versions of the 
same object with fewer geometric primitives (or drawn with 
a less accurate rendering algorithm such as flat shading in- 
stead of Gouraud shading) but rather representations that 
can be drawn on the computer screen in less time than the 
true object and provide the simulation with a feel similar to 
that obtained by using the full detail object. 

With this in mind, our design allows an object to be as- 
sociated to many different representations that resembles it, 
possibly from different view angles. 

4.1.1 Object-Oriented Design 

The main abstraction for a single object, is the “conceptual 
object” abstraction. It corresponds to any object in the 
model that has a well defined meaning in the simulation, 
such as, a car or a building. Associated with the conceptual 
object is a set of “drawable representations”, which have 
characteristics similar to the actual object it represents. 

The “drawable representation” abstraction represents a 
variety of hardware drawable representation or impostors for 
a given conceptual object. The abstractions for drawables 
encapsulate hardware defined primitives such as meshes of 
triangles, splines, list of polygons, etc., as well as the impos- 
tor representations presented in Section 4.1.2. This encap- 
sulation of both hardware primitives and impostors allows 
the design of very efficient rendering routines that extract 
the most performance of the graphics subsystem. Other im- 
postor abstractions may be added to this design as deemed 
necessary to solve a particular problem or to add a particular 
feature to the walk-through program. 

The conceptual object’s interface is defined by virtual 
functions to compute the object’s benefit, visibility, and a 
“draw” function that is redefined for each specific drawable 
representation. The drawable representation’s interface is 
defined by functions to compute the drawable’s rendering 
cost, accuracy, and by customized “draw” functions. 

4.1.2 Types of Impostors 

As mentioned in Section 3.1, we allow an object to be rep 
resented by both view dependent and view independent im- 
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postors. 
Examples of view dependent impostors are: 

l A texture map that is pasted onto the appropriate face 
of an object’s bounding box. This texture map is called 
a textured cluster when it corresponds to an image of 
a group of objects. 

l Anot,her view dependent texture map is also known as 
billboard in [6] and is obtained in the same way as tex- 
ture maps. A billboard is centered at an object’s center 
and :made to rotate in such a way that it always face 
the observer. Since one billboard is computed for each 
face of the object’s bounding box as the observer moves 
around the object a merent billboard is selected to dis- 
play according to the viewpoint. This impostor is useful 
to represent objects that are approximately rotationally 
symmetric such as pine trees. 

l Another variant of the texture map described above is 
a pseudstexture map’. A pseudo-texture map is a tri- 
angular mesh (or a quadrilateral strip) onto which a 
textcue map is pasted in such a way that each pixel in 
the image is associated to a pair of triangles (or quadri- 
lateral) in the mesh. 

Examples of view independent impostors are: 

l The conventional levels-of-detail, i.e., geometrically 
coarse versions of a given object’. 

l Boxes whose faces have the average areas and colors as 
the corresponding sides of the object’s bounding box. 

l Texture mapped boxes. This representation uses tex- 
ture maps that are pasted onto each face of the object’s 
bounding box and is useful to represent box like objects 
such as the Standard Oil Building in Chicago. 

4.2 Impostor Selection 

There are certain cases where specific impostors are more 
suitable than others and we can usually “suggest” to the 
walkthrough program which representation to display at a 
given point in the simulation. 

For example, if the image-space size i’V of an object is 
less then a few pixels then the representation that should 
be used is the average box above. If N is greater then a 
prefixed maximum size then the full detail object might be 
required. If different LODs are present in the model, then 
different image space size thresholds may be used to select 
the appropriate LOD to be displayed. 

Box-like and symmetric objects can be displayed using a 
texture mapped box and a billboard, respectively. Texture 
maps can be selected according to the obesemer’s viewpoint. 
For example, if four texture maps are used for each face of 
an object’s bounding box, then the appropriate texture map 
for a given viewpoint can be selected as follows: 

1. In a pre-processing phase, associate to each texture map 
a number corresponding to the region it belongs as in 
Figure 3. 

lit can be used in machines that do not have texture mapping 
hardware. 

2Some toolkits such aa Performer[G] provide routines to auto- 
matically generate coarse versions of a given full-detail object. 
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Figure 3: Possible viewpoint regions in object coordinates. 

2. During the walkthrough we determine the viewpoint 
with respect to the object’s coordinate system and 
therefore the region it is in. 

In some situations, both a view dependent and a view 
independent representation are suitable. When this iis the 
case, we cau decide upon these two representations b’y ob- 
taining the accuracy of each representation for the particular 
observer view angle using the table described in Section 3.2 
and then select the representation with the highest accu- 
racy/cost ratio. This heuristic is particularly useful in cases 
where the observer’s line of sight is approaching a 45 dlegre 
angle with the line perpendicular to the texture malp. In 
such a case although the texture map may have a low ren- 
dering cost, its accuracy will also have a low value which will 
favor the selection of a possibly more costly view dependent 
representation. 

4.3 Formalization of the Problem 

We begin by defining a meta-object abstraction to be an en- 
tity with one or more hardware drawable representations as 
in the framework described in Section 4.1. It is an abstrac- 
tion for both conceptual objects and groups of objects:. 

As before, a hardware drawable representation is an entity 
that ca.n be rendered by the graphics hardware to represent 
objects and has associated to it a rendering cost and a mea- 
sure of its “contribution” to the simulation. 

The model is then defined as a collection of conceptual 
objects at specific positions and orientations in space that 
forms the environment in which the user navigates. 

The model hierarchy is defined to be a tree structure 
whose node;3 are meta-objects that provide multiple repre 
sentations of the model, each representing it at a given ren- 
dering time and providing the user with a given perception 
of it. In this hierarchy each node contains drawable rep 
resentations of its children. The root contains the coarsest 
representati,ons for the entire model with the lowest possible 
rendering cost while the leaves form the perceptually best 
representation of the model with the highest rendering cost. 

More formally, the model hierarchy M is a tree structure 
that can recursively be defined by the following rules: 

1. 

2. 

A meta-object that has no children is a model hierarchy 
with ju.st one node, the root node. 

Let Ml, Ms. ..M,, be model hierarchies whose root nodes 
are the meta-objects ml, ml...m,, respectively, that 
represent sets of conceptual objects and have associ- 
ated with each of them the sets rl,rz...r,, of drawable 
representations. Let m be a meta-object that repre- 
sents the union of rni and has associated to it a set r 
of drawable representations such that Cost(Maz(r)) < 
CT=, Cost(Min(ri)), where Maz(r) is the repreaenta- 
tion that has the highest cost among those in r, Mi’n(ri) 
is the representation that has the lowest cost among 



those in ri and Cost(z) is the rendering cost of repre- 
sentation x. M is then defined to be a model hierarchy 
if m is the parent of rni for i = 1.. . n. 

Figure A shows how the model of a city would be orgz+ 
nixed to form a hierarchy in which each node has a set of 
impostors to represent the objects it subsumes. 

Given these definitions, we state the walk-through prob- 
lem as a tree traversal problem: 

‘Select a set of nodes in the model hierarchy that pro- 
vides the user with a perceptually good representation of 
the model”, according to the following constraints: 

1. The sum of the rendering cost of all selected nodes is 
less than the user specified frame time. 

2. Only one node can be selected for each path from the 
root node to a leaf node, since each node already con- 
tains drawable representations that represent all its de- 
scendant nodes. 

The problem as described here is an NP-complete tree 
traversal problem and is a variant of the “Knapsack prob- 
lem”, which is not surprising since we are generalizing the 
system that Funkhouser and Sequin showed to be a knapsack 
problem. The candidate sets from which only one element 
will be selected to be put in the knapsack are the set of rep- 
resentations associated to each meta-object. The knapsack 
size is the frame time per frame that the selected represen- 
tations must not exceed. The cost of each element is the 
rendering cost associated to a representation. The profit of 
an element is the accuracy of the representation plus the 
benefit of the object with which it is associated. 

To solve this problem we use the framework described in 
Section 4.1 and develop a model hierarchy building alge 
rithm and a heuristic representation selection algorithm. 

4.4 Design of the Model Hierarchy 

We partition the entire model according to our formalization 
of the problem, and form a tree structure in which each node 
contains low-cost representations for the nodes it subsumes. 

The structure that we use is a variation of an octree that 
is a bounding volume hierarchy, that can be used to cull 
objects against the viewing frustum aud also serves as a 
rendering aid, since we can draw its nodes. 

This tree is constructed in a bottom-up fashion instead of 
the traditional top-down recursive way, so that we can see 
which objects are being “clustered”3 together as described 
in Section 5. 

The criteria used to group objects takes into account only 
the proximity of objects and our model hierarchy building 
program is designed to cluster together nearby objects first 
in the way illustrated in the 2D example of Figure 4. 

According to a user-supplied number of divisions in x, y, 
and z axis of the bounding box of the entire model an initial 
octree cell sire and therefore tree depth is specified. We start 
by creating a “child list” that contains all the conceptual 
objects in the model with their bounding boxes. This initial 
list will correspond to the leaves of the tree. The child list 
is used to generate the next level up of the tree. For each 

3What is meant by clustering is basically the generation of 
impostors for the group of objects. 

2D Example: 

Figure 4: Generating the model hierarchy octree. Represen- 
tations are generated for cells with more than one object. 

Btructural (subtree A) 

Figure 5: Subtree A as depicted on Figure 4. 

level of the tree and for each cell in that level, we get the 
set of objects that are completely inside the cell. If this 
set is empty we move on to the next cell. Otherwise we 
compute the bounding box of the objects in the cell and 
discard it if the bounding box is already in the child list; since 
impostor representations for that set of objects had already 
been created. If it is not in the list we create impostor 
representations for the cluster inside the cell. 

In our implementation clusters are generated by creating 
texture maps’ of the objects from given view angles and their 
generation is described in Section 5. After the impostor rep 
resentations have been created, we make the cell point to its 
children and remove them from the child list. We then add 
the new cell to the end of the child list and repeat the process 
until we obtain a single cell with impostor representations 
for the entire model. 

It is important to note that at each time we cluster objects 
we always take into account the actual objects that the cell 
subtends instead of previously computed clusters. 

Note that cluster representations are generated only if 
there is more then one object totally inside each cell. Single 
objects inside a cell as well as objects on cell boundaries will 
be grouped in the next levels up in the hierarchy. Figure 5 
shows the structure of subtree A depicted in Figure 4. 

4.5 ‘lkaversal of the Model Hierarchy 

Due to the NP-complete nature of selecting representations 
to render from the model hierarchy, we have devised a heuris- 
tic algorithm that quickly (in less than the frame time) tra- 
verses the model hierarchy. This algorithm selects repre- 
sentations to be rendered, accumulating rendering cost until 
the user-specified frame time is reached. When this occurs, 

4Actually, representations only need to obey the cost require- 
ment stated in Section 4.3. 
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the algorithm stops and sends a list of representations to the 
graphics pipeline. 

The tree traversal is top-down from the root node and 
first traverses the branches that contain the most &‘benefi- 
cisl” nodes according to the benefit heuristic presented in 
Section 3.1. 

The problem is that our per-object benefit heuristic asso 
ciates benefit not to cluster representations but to represen- 
tations for conceptual objects that are at the very bottom of 
the tree. High up in the hierarchy we do not know to which 
branches of the tree the most beneficial objects belong. Be- 
cause of this, we have decided to break the selection of nodes 
to render in two phases as described below. 

4.5.1 First Pass: Assign Initial Representation, 
I3ene&, Visibility, and Cost. 

In this first phase of the selection process, we recursively 
descend the model hierarchy in a depth-first manner and 
associate a benefit and visibility value with each node in the 
tree, and an initial drawable representation. 

Since ,the leaves represent single objects, their benefits 
are computed as a weighted average of the factors intrinsic 
to objects as described in Section 3.1. The benefit value 
sssociate8d to a tree node is taken to be the maximum value 
of all the benefits of its children. 

The visibility of nodes are computed by checking if the 
bounding box in eye-coordinates of the bounding box of the 
object intersects the viewing frustum. A node is said to be 
visible if at least one of its children is visible. 

At a given point in the simulation a view dependent and a 
view independent representation for an object is selected us- 
ing the criteria specified in Section 4.2. The rendering cost 
and accuracy of drawable representations that are stored 
with each representation in the model are used to select 
which of these two representations will be assigned to be 
the initial representation of the node. The representation 
that has .the highest accuracy/cost ratio is selected to be the 
initial representation. In the next phase (described below), 
if there is still frame time left we try to improve on this 
initial choice. 

After initial representations are selected to each of a 
node’s children, the children’s cost is stored with the node 
to be used in the next phase. 

4.5.2 Second Pass: Best-First Tree Traversal. 

In this phase, we use the information obtained in the pre- 
vious phase for each node of the model hierarchy to imple- 
ment an efficient ‘best-first’ tree traversal. The result of this 
traversal is a rendering list of drawable representations that 
is sent to the graphics hardware for rendering as shown in 
Figure 6. 

To implement this strategy, we make use of a list of meta- 
objects organized in decreasing order of benefit (computed 
in the previous phase). We keep accumulating frame time as 
we select representations to render and whenever the time 
required to render the children of a node plus the total ac- 
cumulated time so far exceeds the &true time we insert the 
representation for the node in the rendering list and move 
on to the next node. 

The algorithm first explores the branches of the tree con- 
nected to the most beneficial nodes as follows: Start by in- 
serting the root node in the list and setting the total render- 
ing cost to be the cost of rendering the initial representation 
associated to the root node. We then process this list until 
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Figure 6: Tree representing the model hierarchy and the set 
of nodes to, be rendered as a linked list. 

it is empty. We remove the element in the front of the list 
and discard it if it is not visible. 

If the node is a leaf node (containing a conceptual object) 
we check if there is still rendering time left to select a better 
representation for the object. In the positive case we select 
to render (insert in the rendering list) the next higher accu- 
racy representation for the node and add its rendering time 
to the total accumulated rendering time. 

In the case where the node contains representations for a 
cluster of objects, we check if instead of rendering the (cluster 
representation we still have time to render all of its children, 
i.e., the total accumulated time plus the cost of rendering 
the node’s children does not exceed the frame time. In the 
positive case, we insert each of its visible children in the 
list ordered by each ones benefit and add their cost to the 
total accumulated rendering time. Otherwise we insert the 
cluster’s representation into the rendering list. 

Note that at each point in this traversal, a complete rep 
resentation of the scene is stored in the list of meta-objects 
and whenever there is frame time left to render the children 
of a node, before adding the cost of the children to the total 
accumulated cost we subtract the cost of the initial repre- 
sentation for the node. 

4.6 Temporal Coherence 

While navigating through the model the viewpoint can ran- 
domly get close or far away from “important” objects that 
require most of the frame time. This sometimes causes a 
seemingly random switch from a cluster representation to 
the representations of the actual objects (or vice-versa). The 
idea of using frame-to-frame temporal coherence as used by 
Funkhouser and Sequin, is used here to mi ninimize this ef- 
fect by disc:ouraging switching from representations for par- 
ent nodes to representations for children nodes. We Ikeep a 
counter of the number of times the walkthrough program de- 
cided to switch from parent to children. The actual switch- 
ing is only aIlowed if this counter exceeds a prefixed thresh- 
old. The delayed switching from children representations to 
cluster representations is not implemented since it would oc- 
cur in a situation that most of the frame time has already 
been allocated and this delay would greatly reduce the frame 
rate. 
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5 Implementation 

This research has resulted in the implementation of three 
programs on a four processor SGI Onix workstation with 
a RealityEngine board: the model hierarchy building and 
representation generation program, the cost and accuracy of 
representations measurement program, and the w&through 
program. 

These programs are implemented in C++, use GL[8] for 
rendering, and have an X-Motif GUI to facilitate parameter 
changes for system evaluation. 

5.1 Model Hierarchy Building and Representa- 
tion Generation 

The program that builds the model hierarchy implements 
the hierarchy building algorithm described in section 4.4 and 
opens two windows, as shown in Figure B. The right window 
displays the objects/clusters and compute texture maps for 
each of the sides of their bounding boxes while the left illus- 
trates the process of building the hierarchy. In this image, 
the dots represents objects that were not “clustered” yet. 
The purple square with green dots is the bounding box of 
the objects (in green) that completely fit inside it and the 
“red” band is showing groups of objects already “clustered”. 

View dependent impostors such as texture maps are au- 
tomatically obtained in the following way with the help of 
the graphics hardware: 

Set up a viewpoint, a viewing direction, and an ortho- 
graphic projection matrix. 

Draw the object(s) in a complete% black background 
and adjust the texture resolution by scaling the ob- 
ject(s) inside the orthographic viewing volume. 

Grab the resulting image from the window (right win- 
dow in Figure B) and set the alpha component of black 
pixels to zero, so that if the objects have holes we can 
see through when they are rendered. 

Average color boxes are also obtained in a similar fashion. 
The average color for each face is just the average of the rgb 
colors of all non-black pixels and the average area is the 
number of all non-black pixels in the face’s image that is 
converted to au area in object coordinates. 

The generation of a pseudo-texture map involves a pre- 
processing of the original image because if there are too 
many pixels on the image the rendering of the texture would 
require too many meshed triangles. Therefore, we succes- 
sively shrink the original image by convolving it with a Gaus- 
sian filter that averages the RGB components of the pixels. 

5.2 Cost and Accuracy of Representations 
Measurement 

The cost of each representation is measured by selecting a 
specific representation and drawing it a number of times in 
order to get an average rendering time as shown in Figure 
C. 

The accuracy of an impostor is measured using the proce- 
dure described in Section 3.2 and a table that describes how 
similar each of the representations is compared to the origi- 
nal image of the object for five directions around the object 

sWhat ultimately determines the resolution of the texture map 
is the complexity (or granularity of details) that the object(s) 
exhibit(s) from a particular direction. 

Figure 7: Checking the visibility of a set of objects against 
the viewing frustum. 

is generated. One of the most immediate improvements we 
need to make is the use of more directions in this table. 

5.3 Visual Navigation 

The walkthrough program implements the framework de- 
scribed in Section 4.1 and the traversal algorithms described 
in Section 4.5. The computation of the representation to be 
rendered in the next frame is done in one processor while 
another one holds the graphics pipeline to render the cur- 
rent frame. Semaphores are used to synchronize the two 
processes. 

The traversal algorithm assumes that visibility of bound- 
ing boxes can be determined quickly. This can be done by 
first computing the bounding box in eye-coordinates of the 
object’s bounding box. We then compute its intersection 
with a box formed by extending the slice of the viewing 
frustum corresponding to the farthest z-value of this box to 
its nearest z-value. This visibility test can return true even 
though no object inside the cluster is also inside the viewing 
frustum as shown in Figure 7. 

This problem is solved by the first phase of the traversal 
algorithm since it marks a cluster as visible if and only if 
at least one of the objects that it represents is inside the 
viewing frustum. If computing the visibility of individual 
objects are taking too much time we can use a faster test 
and check if spheres enclosing groups of objects intersect 
the viewing liustum. 

5.4 Performance 

Our test model has around 1.6 million polygons and dur- 
ing our tests we have constrained the number and size of 
texture maps generated by the hierarchy building program 
to the available texture memory of one megatexel (one mil- 
lion texture pixels) by selecting appropriate octree cell sizes 
and adjusting the resolution of the texture representation 
for objects and clusters. 

For this model we were able to keep a frame rate of around 
16 frames per second (fps) for a target frame rate of 30 fps 
throughout the simulation without too much degradation 
in image quality. Figure D shows the image seen by the 
observer (left) and a top view of the the same scene showing 
where clusters are being displayed (right). 

Figure 8 shows the user mode (right) and real time (left) 
throughout a simulation path of the model. The user time 
graph shows that our estimation of cost and rendering algo- 
rithm is achieving the goal of keeping a uniform and high 
frame rate. The real time graph show spikes due to random 
interrupts and a gap with respect to the l/30 line due to 
smooth LOD switching using transparency blending. 
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Figure 8: Plot frame versus frame time with (left) and with- 
out (right) smooth LOD switching. 

These interrupts can be minimized by mechanisms such as 
processor isolation, interrupts redirection, processor locking 
and so OIL as described in [9]. 

The s8ame model, without the model hierarchy, takes 
around 1 frame per second for certain viewpoints in our test 
path. 

6 Limitations 

One limitation of this system is the number of texture maps 
that can be used to represent objects and clusters. As the 
system uses more texture maps to represent clusters and 
individual objects, the chance of a texture-cache miss in- 
creases. .A cache miss results in an unpredictable interrupt 
that will iinvariably defeat the purpose of a predictive system. 
Future methods of intelligent prefetch of textures that are 
likely to be needed could make texture cache misses much 
less likely, and thus allow the use of many more textured 
impostors. 

We have not addressed the illumination of the environ- 
ment. Although the illumination of a complex environment 
can be computed using the radiosity method in a view in- 
dependent fashion the shading attributes of objects (adding 
specular highlights) and clusters would need to be incorpo- 
rated to their representations. Instancing of objects would 
not be practical since two identical objects in different lot+ 
tions in the model would have dserent shading attributes. 
As the size of texture memory increases these problems will 
become l,ess serious, but they will not go away. 

The most serious limitation in our current implement* 
tion is that our tree traversal requires that a cluster know 
something about the benefits of its children, so all primitives 
are visited once per frame in the first pass of the algorithm, 
and therefore it is O(n), where n is the number of objects. 
Our traversal algorithm is top-down, so there is no reason 
it could not, be O(log n) if a more intelligent traversal algo- 
rithm is used. 

7 Co,nclusion 

We have presented a way of using clusters of objects to im- 
prove the performance of an LOD-based visual navigation 
system. When there are too many visible LODs to render 
in real-time, we render single texture-mapped cluster primi- 
tives in place of groups of individual LODs. The techniques 
used to generate clusters can also be used to generate a par- 
ticular tj-pe of textured LODs for single primitives. We have 

also discussed some limitations of the object-based benefit 
heuristic, and extended it to account for the variability of 
an LOD’s quality as the view angle changes. 

The main lessons to be drawn from this work are that the 
predictive framework of Funkhouser and Squin extends well 
to a hierarchical version of the LOD concept, and tha.t pre- 
computed visibility information is not essential for ef6cient 
visual navigation programs. 
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Figure A: Model hierarchy for a city 
Figure C: Measuring the rendering 

cost of a representation. 

Figure B: Building of the model hierarchy 

Figure D: User view (left) and top view of same scene (right) showing clusters in 
green. 


